Skip to main content
Log in

Public information, education and welfare

Economia Politica Aims and scope Submit manuscript

Cite this article


We study investments in education made by a continuum of individuals under imperfect information on returns. In the model, the wage accruing to single units of human capital is bargained in the labour market. In addition, this wage depends positively on a stochastic fundamental and, negatively, on the aggregate supply of human capital. At the time of investment, any agent observes a public and a private signal of the fundamental. We show that an increase in the precision of the public signal has an ambiguous impact on the expected social welfare. On the one hand, social welfare improves as schooling decisions become closer to those decisions that would be made under perfect information. On the other hand, social welfare deteriorates as externalities and coordination failures become more severe. The key result of our analysis is that an increase in the quality of public information turns out to be welfare improving, unless the distortions on the labour market are particularly strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. If one assumes that production depends also on physical capital and that such a capital is chosen after the uncertainty over \(\theta\) is resolved, the model would be qualitatively equivalent to the one we actually adopt. Since the stock of physical capital is decided upon in conditions of lower uncertainty than the stock of human capital, we abstract from physical capital to ease the exposition.

  2. For a well-known application of the efficient bargaining assumption, we refer to Blanchard and Giavazzi (2003). Layard et al. (1991) discuss the differences between efficient bargaining and ‘right to manage’.

  3. It is possible to obtain a closed-form solution assuming a log-normally distributed fundamental. However, in our case, the convexity induced by log-normality carries some unpleasant consequences. In fact, it implies that an increase in the variance of the fundamental increases the expected productivity. Moreover, a more precise public information about the fundamental reduces the expected productivity, bearing spurious consequences both on individual utility and on aggregate welfare.

  4. Formally, proving uniqueness requires the restriction \(\left| {\mathcal {U}} _{hH}/{\mathcal {U}}_{hh}\right| <1,\) which in our set-up translates into \(v<\phi .\) Notice however that Angeletos and Pavan (2007) argue that this technical problem can be bypassed by imposing bounds on actions.

  5. To save on notation, here we have omitted the arguments of \(\gamma \left( \pi _{z},\pi _{x}\right)\). We will continue do so throughout the paper wherever no confusion is possible.

  6. The link between public and private information is analyzed also by Wong (2008), in a model in which an increase in the transparency of the public information provided by a policymaker—for instance a Central Bank—reduces the fraction of agents who acquire a private information on the fundamental.

  7. Analytically, one can prove that the difference between the social and the private evaluation of volatility, given by \(U_{HH}+U_{hH},\) becomes more negative as \(\beta\) increases.


  • Acemoglu, D. (1996). A microfoundation for social increasing returns in human capital accumulation. The Quarterly Journal of Economics, 111, 779–804.

    Article  Google Scholar 

  • Angeletos, G. M., Iovino, L., & La’O, J. (2016). Real rigidity, nominal rigidity, and the social value of information. American Economic Review, 106, 200–227.

    Article  Google Scholar 

  • Angeletos, G. M., & Pavan, A. (2007). Efficient use of information and social value of information. Econometrica, 75, 1103–1142.

    Article  Google Scholar 

  • Betts, J. R. (1996). What do students know about wages? Evidence from a survey of undergraduates. The Journal of Human Resources, 31, 27–56.

    Article  Google Scholar 

  • Blanchard, O., & Giavazzi, F. (2003). Macroeconomic effects of regulation and deregulation in goods and labor markets. The Quarterly Journal of Economics, 118, 879–907.

    Article  Google Scholar 

  • Brunello, G., Lucifora, C., & Winter-Ebmer, R. (2004). The wage expectations of European business and economics students. The Journal of Human Resources, 39, 1116–1142.

    Article  Google Scholar 

  • Colombo, L., & Femminis, G. (2008). The social value of public information with costly information acquisition. Economics Letters, 100, 196–199.

    Article  Google Scholar 

  • Colombo, L., Femminis, G., & Pavan, A. (2014). Information acquisition and welfare. Review of Economic Studies, 81, 1438–1483.

    Article  Google Scholar 

  • Dominitz, J., & Masky, C. F. (1996). Eliciting student expectations of the returns to schooling. The Journal of Human Resources, 31, 1–26.

    Article  Google Scholar 

  • EU Commission. (2016). A new skill agenda for Europe.

  • EU Commission. (2017). EU skills panorama.

  • Hellwig, C., & Veldkamp, L. (2009). Knowing what others know: Coordination motives in information acquisition. Review of Economic Studies, 76, 223–251.

    Article  Google Scholar 

  • Layard, R. G., Nickell, S. J., & Jackman, R. (1991). Unemployment: Macroeconomic performance and the labour market. Oxford: Oxford University Press.

    Google Scholar 

  • Llosa, L. G., & Venkateswaran, V. (2012). Efficiency under endogenous information choice. Mimeo: Pennsylvania State University.

    Google Scholar 

  • Mincer, J. (1974). Schooling, experience, and earnings. New York: Columbia University Press.

    Google Scholar 

  • Morris, S., & Shin, H. S. (2002). The social value of public information. American Economic Review, 92, 1521–1534.

    Article  Google Scholar 

  • Myatt, D. P., & Wallace, C. (2012). Endogenous information acquisition in coordination games. Review of Economic Studies, 79, 340–374.

    Article  Google Scholar 

  • Sims, C. A. (2006). Rational inattention: Beyond the linear-quadratic case. American Economic Review, 96, 158–163.

    Article  Google Scholar 

  • Wiswal, M., & Zafar, B. (2013). How do college students respond to public information about earnings? Mimeo.

  • Wong, J. (2008). Information acquisition, dissemination, and transparency of monetary policy. Canadian Journal of Economics, 41, 46–79.

    Article  Google Scholar 

Download references


We are grateful to two anonymous Referees and to the Associate Editor, Federico Revelli, for valuable comments and suggestions. A preliminary version of this contribution has been presented at the 18th International Conference on Computing in Economic and Finance: we thank the participants for helpful discussions. The research work leading to these results has received funding from the Catholic University of Milan (Grant D12018).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Giulio Piccirilli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix 1: Bargaining

Using the Lagrange multiplier \(\lambda\), the Nash problem in Eq. (1) may be written as follows:

$$\begin{aligned} Max_{\lambda ,w,\left\{ H_{j}\right\} _{j=1\ldots m}}\,\left[ \sum \limits _{j}\left( Y_{j}-wH_{j}\right) \right] ^{\beta }\left( w\sum \limits _{j}H_{j}\right) ^{1-\beta }+\lambda \left[ H-\sum \limits _{j}H_{j}\right] , \ \ \ \lambda \ge 0 \end{aligned}$$

First order conditions with respect to \(H_{j}\), \(j=1\ldots m\) and w are

$$\begin{aligned} \begin{array}{c} \left[ \left( 1-v\right) \theta H_{j}^{-v}-w\right] \beta \left[ \frac{ w\sum \nolimits _{j}H_{j}}{\sum \nolimits _{j}\left( \theta H_{j}^{1-v}-wH_{j}\right) }\right] ^{1-\beta }+\left( 1-\beta \right) w\left[ \frac{\sum \nolimits _{j}\left( \theta H_{j}^{1-v}-wH_{j}\right) }{ w\sum \nolimits _{j}H_{j}}\right] ^{\beta }-\lambda =0 \\ \\ \frac{w\sum \nolimits _{j}H_{j}}{\sum \nolimits _{j}\left( \theta H_{j}^{1-v}-wH_{j}\right) }=\frac{1-\beta }{\beta } \end{array} \end{aligned}$$

Substitute the second into the first and rearrange:

$$\begin{aligned} \lambda =\left( 1-v\right) \theta H_{j}^{-v}\left( 1-\beta \right) \left[ \frac{\beta }{1-\beta }\right] ^{\beta } \end{aligned}$$

An implication of Eq. (31) is that \(\lambda >0\): the constraint on the total amount of human capital is strictly binding. A second implication is that all firms employ the same amount of human capital:

$$\begin{aligned} H_{j}=H/m \end{aligned}$$

Substitute the latter in the f.o.c. for w and solve:

$$\begin{aligned} w=\left( 1-\beta \right) \theta m^{v}H^{-v} \end{aligned}$$

This expression coincides with the wage equation reported in the main text [Eq. (2)]

Appendix 2: Linear-quadratic approximation

1.1 2.1 Utility function

In this section we compute the linear-quadratic approximation of the objective function

$$\begin{aligned} {\mathcal {U}}(h_{i},H,\theta )=\beta m^{v}\theta H^{1-v}+\left( 1-\beta \right) m^{v}\theta H^{-v}h_{i}-\frac{h_{i}^{1+\phi }}{\delta \left( 1+\phi \right) } \end{aligned}$$

The approximation is computed around the non-stochastic equilibrium as defined by the following first order condition:

$$\begin{aligned} h_{i}^{\phi }=\delta \left( 1-\beta \right) m^{v}\theta H^{-v}, \end{aligned}$$

Solving this condition gives equilibrium investments, output and wages:

$$\begin{aligned} {\overline{h}}_{i}={\overline{H}}=\left[ \delta \left( 1-\beta \right) {\overline{\theta }}m^{v}\right] ^{\frac{1}{\phi +v}} \ \ \ \ \ \ {\overline{Y}}= {\overline{\theta }}m^{v}{\overline{H}}^{1-v} \ \ \ \ \ \ \ \ {\overline{w}} =\left( 1-\beta \right) {\overline{Y}}/{\overline{H}} \end{aligned}$$

The derivatives of \({\mathcal {U}}(h_{i},H,\theta )\) computed in this equilibrium are the following:

$$\begin{aligned} \begin{array}{ccc} {\mathcal {U}}_{h}=0 &{} {\mathcal {U}}_{hh}=-\phi \left( 1-\beta \right) {\overline{Y}}{\overline{H}}^{-2} &{} {\mathcal {U}}_{hH}=-v\left( 1-\beta \right) {\overline{Y}} {\overline{H}}^{-2} \\ {\mathcal {U}}_{h\theta }=\left( 1-\beta \right) {\overline{Y}}{\overline{H}}^{-1} {\overline{\theta }}^{-1} &{} {\mathcal {U}}_{H}=\left( \beta -v\right) {\overline{Y}} {\overline{H}}^{-1} &{} {\mathcal {U}}_{HH}=v\left( 1+v-2\beta \right) {\overline{Y}} {\overline{H}}^{-2} \\ {\mathcal {U}}_{H\theta }=\left( \beta -v\right) {\overline{Y}}{\overline{H}}^{-1} {\overline{\theta }}^{-1} &{} {\mathcal {U}}_{\theta }={\overline{Y}}{\overline{\theta }}^{-1} &{} {\mathcal {U}}_{\theta \theta }=0 \end{array} \end{aligned}$$

The approximated objective function \(U(h_{i},H,\theta )\) is

$$\begin{aligned} U(h_{i},H,\theta )= & {} {\mathcal {U}}\left( {\overline{H}},{\overline{H}},{\overline{\theta }}\right) +{\mathcal {U}}_{H}\left( H-{\overline{H}}\right) +{\mathcal {U}} _{\theta }\left( \theta -{\overline{\theta }}\right) \\&+\frac{{\mathcal {U}}_{hh}}{2}\left( h_{i}-{\overline{H}}\right) ^{2}+{\mathcal {U}} _{hH}\left( h_{i}-{\overline{H}}\right) \left( H-{\overline{H}}\right) +\frac{ {\mathcal {U}}_{HH}}{2}\left( H-{\overline{H}}\right) ^{2} \\&+{\mathcal {U}}_{h\theta }\left( h_{i}-{\overline{H}}\right) \left( \theta - {\overline{\theta }}\right) +{\mathcal {U}}_{H\theta }\left( H-{\overline{H}} \right) \left( \theta -{\overline{\theta }}\right) -C(\pi _{x_{i}}). \end{aligned}$$

Since the decisions concerning information acquisition take place at the earliest stage of the model, it is useful to compute the ex-ante expected utility. Notice that, using the definition for \(h(x_{i},z)\) provided in (7), that for \(H(\theta ,z)\) in (8), and (11), we have that

$$\begin{aligned} E\left[ \left( H-{\overline{H}}\right) ^{2}\right]&=\varrho ^{2}\left( \frac{ 1}{\pi _{\theta }}+\frac{\gamma ^{2}}{\pi _{z}}-\frac{2\gamma }{\pi _{z}} \right) , \\ E\left[ \left( h_{i}-{\overline{H}}\right) \left( H-{\overline{H}}\right) \right]&=E\left[ \left( h_{i}-H\right) \left( H-{\overline{H}}\right) +\left( H- {\overline{H}}\right) ^{2}\right] =E\left[ \left( H-{\overline{H}}\right) ^{2} \right] , \\ E\left[ \left( h_{i}-{\overline{H}}\right) ^{2}\right]&=E\left[ \left( h_{i}-H+H-{\overline{H}}\right) ^{2}\right] =\varrho ^{2}\frac{\left( 1-\gamma \right) ^{2}}{\pi _{x_{i}}}+\varrho ^{2}\left( \frac{1}{\pi _{\theta }}+ \frac{\gamma ^{2}}{\pi _{z}}-\frac{2\gamma }{\pi _{z}}\right) , \\ E\left[ \left( H-{\overline{H}}\right) \left( \theta -\overline{\theta } \right) \right]&=\varrho \left( \frac{1}{\pi _{\theta }}-\frac{\gamma }{ \pi _{z}}\right) , \\ E\left[ \left( h_{i}-{\overline{H}}\right) \left( \theta -{\overline{\theta }} \right) \right]&=E\left[ \left( h_{i}-H\right) \left( \theta -{\overline{\theta }}\right) +\left( H-{\overline{H}}\right) \left( \theta -{\overline{\theta }}\right) \right] =E\left[ \left( H-{\overline{H}}\right) \left( \theta - {\overline{\theta }}\right) \right] . \end{aligned}$$

Notice that the notation \(\pi _{x_{i}}\) underscores the fact that this is the precision that individual i takes into account; notice also that there is no need to distinguish the ‘individual’ weight \(\gamma _{i}\) from the ‘average’ \(\gamma\) since the envelope theorem guarantees that the impact of \(\pi _{x_{i}}\) passing through ‘individual’ weight \(\gamma _{i}\) is nil.

The variances and covariances obtained above allow to express the ex-ante utility as

$$\begin{aligned} E\left[ U(h_{i},H,\theta )\right]= & {} {\mathcal {U}}\left( {\overline{H}},{\overline{H}},{\overline{\theta }}\right) +\left( \frac{{\mathcal {U}}_{hh}}{2}+{\mathcal {U}} _{hH}+\frac{{\mathcal {U}}_{HH}}{2}\right) \frac{\varrho ^{2}}{\pi _{\theta }} +\left( {\mathcal {U}}_{h\theta }+{\mathcal {U}}_{H\theta }\right) \varrho \frac{1 }{\pi _{\theta }} \nonumber \\&+\frac{{\mathcal {U}}_{hh}}{2}\varrho ^{2}\frac{\left( 1-\gamma \right) ^{2}}{ \pi _{x_{i}}}+\left( \frac{{\mathcal {U}}_{hh}}{2}+{\mathcal {U}}_{hH}+\frac{ {\mathcal {U}}_{HH}}{2}\right) \varrho ^{2}\left( \frac{\gamma ^{2}}{\pi _{z}}- \frac{2\gamma }{\pi _{z}}\right) \nonumber \\&-\left( {\mathcal {U}}_{h\theta }+{\mathcal {U}}_{H\theta }\right) \varrho \frac{ \gamma }{\pi _{z}}-C(\pi _{x_{i}}). \end{aligned}$$

1.2 2.2 Information acquisition and expected welfare

In this section we derive the equation that determines the optimal precision of the private signal \(\pi _{x_{i}}\) [Eq. (13) in the main text].

The equation corresponds to the first order condition of Problem (12), which we report below for immediate reference:

$$\begin{aligned} \underset{\pi _{x_{i}}}{\max }E\left[ U\left( h_{i},H,\theta |z,x_{i}\right) \right] -C(\pi _{x_{i}}) \end{aligned}$$

To solve this problem we first compute the expectation \(E\left[ U\left( h_{i},H,\theta |z,x_{i}\right) \right]\) by substituting—where relevant—the values for the derivatives of \(U(h_{i},H,\theta )\) obtained in Appendix 2.1:

$$\begin{aligned} E\left[ U(h_{i},H,\theta )\right]= & {} {\mathcal {U}}\left( {\overline{H}},{\overline{H}},{\overline{\theta }}\right) +\left( \frac{{\mathcal {U}}_{hh}}{2}+{\mathcal {U}} _{hH}+\frac{{\mathcal {U}}_{HH}}{2}\right) \frac{\varrho ^{2}}{\pi _{\theta }} +\left( {\mathcal {U}}_{h\theta }+{\mathcal {U}}_{H\theta }\right) \varrho \frac{1 }{\pi _{\theta }} \nonumber \\&-\frac{1}{2}\frac{{\overline{Y}}}{{\overline{H}}^{2}}\phi \left( 1-\beta \right) \varrho ^{2}\frac{\left( 1-\gamma \right) ^{2}}{\pi _{x_{i}}}-\frac{1}{2} \frac{{\overline{Y}}}{{\overline{H}}^{2}}\left( \left( \phi +v\right) \left( 1-v\right) +\phi \left( v-\beta \right) \right) \varrho ^{2}\left( \frac{ \gamma ^{2}}{\pi _{z}}-\frac{2\gamma }{\pi _{z}}\right) \nonumber \\&-\frac{{\overline{Y}}}{{\overline{H}}{\overline{\theta }}}\left( 1-v\right) \varrho \frac{\gamma }{\pi _{z}}-C(\pi _{x_{i}}). \end{aligned}$$

Second, we differentiate \(E\left[ U\left( h_{i},H,\theta \right) \right]\) with respect to \(\pi _{x_{i}}\). In computing the derivative, we take account of the fact that, by the envelope theorem, the impact of \(\pi _{x_{i}}\) passing through the change in parameters \(h_{1}\) and \(h_{2}\) is nil:

$$\begin{aligned} \frac{dE\left[ U(.)\right] }{d\pi _{x_{i}}}=\frac{1}{2}\frac{{\overline{Y}}}{ {\overline{H}}^{2}}\phi \left( 1-\beta \right) \varrho ^{2}\frac{\left( 1-\gamma \right) ^{2}}{\pi _{x_{i}}^{2}}\left( =\frac{1}{2}\phi \left( 1-\beta \right) \frac{{\overline{Y}}}{{\overline{H}}^{2}}\frac{h_{1}^{2}}{\pi _{x_{i}}^{2}}\right) \end{aligned}$$

Notice that this derivative coincides with the LHS of Eq. (13) in the main text. The RHS is straightforward.

Having computed the expected utility for the i-th individual—i.e. \(E\left[ U\left( h_{i},H,\theta \right) \right]\)—the expected welfare under the laissez faire can be immediately derived by aggregation. In fact, the welfare expression used in the main text corresponds to the aggregation of equation (34) after accounting for the fact that, in equilibrium, all agents acquire the same level of private information (\(\pi _{x_{i}}=\pi _{x}\)).

Appendix 3: Proofs

Proof for Proposition 2

Substitute Equations (29) and (26) in Equation (24):

$$\begin{aligned} \frac{dE\left[ W\right] }{d\pi _{z}}= & {} \frac{1}{2}\frac{{\overline{Y}}}{ {\overline{H}}^{2}}\left( \left( \phi +v\right) \left( 1-v\right) +\phi \left( v-\beta \right) \right) \varrho ^{2}\frac{\gamma ^{2}}{\pi _{z}^{2}}-\frac{ {\overline{Y}}}{{\overline{H}}^{2}}\phi \left( v-\beta \right) \varrho ^{2}\frac{ \gamma }{\pi _{z}^{2}}+ \nonumber \\&+\varrho ^{2}\frac{{\overline{Y}}}{{\overline{H}}^{2}}\frac{\pi _{z}+\pi _{x}}{ \pi _{z}}\frac{\phi \left( \phi +v\right) }{\left( \phi \pi _{z}+\left( \phi +v\right) \pi _{x}\right) }\left( v-\beta \right) \frac{d\gamma }{d\pi _{z}} \end{aligned}$$

Next, substitute in the latter the expression for \(\frac{d\gamma }{d\pi _{z}}\) that holds when acquisition costs are linear—i.e. Equation (16)—and the expression for \(\gamma\) contained in Equation (10):

$$\begin{aligned} \left. \frac{dE\left[ W\right] }{d\pi _{z}}\right| _{C^{^{\prime \prime }}=0}=\frac{1}{2}\frac{{\overline{Y}}}{{\overline{H}}^{2}}\left[ \left( \phi +v\right) \left( 1-v\right) +\left( 2v+\phi \right) \left( v-\beta \right) \right] \varrho ^{2}\frac{\gamma ^{2}}{\pi _{z}^{2}} \end{aligned}$$

From Equation (36) it is immediate to conclude that Restriction (30) is both necessary and sufficient for the derivative \(\left. \frac{dE\left[ W\right] }{d\pi _{z}}\right| _{C^{^{\prime \prime }}=0}\) to be negative. \(\square\)

Proof for Proposition 3

When \(\beta -v>0,\) the indirect effect can determine negative consequences on welfare. Eq. (25) and the result presented in Proposition 1 allow to conclude that the indirect effect is strongest when the information acquisition costs are linear. Hence, Restriction (30) is necessary (but not sufficient) to guarantee the result.

When instead \(\ \beta -v<0\) the indirect effect has positive effects on welfare. Hence, we now consider the most favorable cost structure for the social value of public information to be negative, namely the one that nullifies the substitution effect between public and private information. From Proposition 1, this happens when \(C^{^{\prime \prime }}\left( \pi _{x}\right) \longrightarrow \infty .\)

Following the same steps that led to Eq. (36) we obtain

$$\begin{aligned} \left. \frac{dE\left[ W\right] }{d\pi _{z}}\right| _{C^{^{\prime \prime }}\left( \pi _{x}\right) \longrightarrow \infty }= & {} \frac{1}{2}\frac{{\overline{Y}}}{{\overline{H}}^{2}}\left( \left( \phi +v\right) \left( 1-v\right) +\phi \left( v-\beta \right) \right) \varrho ^{2}\frac{\gamma ^{2}}{\pi _{z}^{2}}- \frac{{\overline{Y}}}{{\overline{H}}^{2}}\phi \left( v-\beta \right) \varrho ^{2} \frac{\gamma }{\pi _{z}^{2}} \nonumber \\&+\frac{{\overline{Y}}}{{\overline{H}}^{2}}\frac{\pi _{z}+\pi _{x}}{\pi _{z}} \frac{\phi \left( \phi +v\right) }{\left( \phi \pi _{z}+\left( \phi +v\right) \pi _{x}\right) }\left( v-\beta \right) \frac{\left( \phi +v\right) \pi _{x}}{\phi }\varrho ^{2}\frac{\gamma ^{2}}{\pi _{z}^{2}}, \end{aligned}$$

which readily becomes

$$\begin{aligned}&\left. \frac{dE\left[ W\right] }{d\pi _{z}}\right| _{C^{^{\prime \prime }}\left( \pi _{x}\right) \longrightarrow \infty }=\frac{1}{2}\frac{\overline{ Y}}{{\overline{H}}^{2}}\varrho ^{2}\frac{\gamma ^{2}}{\pi _{z}^{2}} \\&\quad \times \left( \left( \phi +v\right) \left( 1-v\right) +\phi \left( v-\beta \right) -2\frac{\phi \left( v-\beta \right) }{\gamma }+2\frac{\pi _{z}+\pi _{x}}{\pi _{z}}\frac{\left( v-\beta \right) \left( \phi +v\right) ^{2}\pi _{x}}{\phi \pi _{z}+\left( \phi +v\right) \pi _{x}}\right) . \end{aligned}$$

Exploiting the definition for \(\gamma\) where appropriate we obtain

$$\begin{aligned} \left. \frac{dE\left[ W\right] }{d\pi _{z}}\right| _{C^{^{\prime \prime }}\left( \pi _{x}\right) \longrightarrow \infty }=\frac{1}{2}\frac{{\overline{Y}}}{{\overline{H}}^{2}}\varrho ^{2}\frac{\gamma ^{2}}{\pi _{z}^{2}}\left( \left( \phi +v\right) \left( 1-v\right) +\left( \beta -v\right) F\left( \pi _{x},\pi _{z}\right) \right) , \end{aligned}$$


$$\begin{aligned} F\left( \pi _{x},\pi _{z}\right) =\frac{\phi ^{2}\pi _{z}+\left( \phi +v\right) \left( \phi -2v\right) \pi _{x}}{\phi \pi _{z}+\left( \phi +v\right) \pi _{x}}\mathbf {.} \end{aligned}$$

Since \(\beta <v\) the fact that

$$\begin{aligned} \frac{\partial F\left( \pi _{x},\pi _{z}\right) }{\partial \pi _{x}}<0 \end{aligned}$$

implies that the most favorable case for \(\frac{dE\left[ W\right] }{d\pi _{z} }<0\) occurs when \(\pi _{x}=0,\) and hence when \(F\left( \pi _{x},\pi _{z}\right) =\phi\). Accordingly, for given \(\left( \pi _{x},\pi _{z}\right) ,\)

$$\begin{aligned} \left. \frac{dE\left[ W\right] }{d\pi _{z}}\right| _{C^{^{\prime \prime }}\left( \pi _{x}\right) \longrightarrow \infty }\ge \frac{1}{2}\frac{ {\overline{Y}}}{{\overline{H}}^{2}}\varrho ^{2}\frac{\gamma \left( \pi _{x},\pi _{z}\right) ^{2}}{\pi _{z}^{2}}\left( \left( \phi +v\right) \left( 1-v\right) +\left( \beta -v\right) \phi \right) . \end{aligned}$$

This guarantees that a necessary (but not sufficient) condition for \(\frac{dE \left[ W\right] }{d\pi _{z}}<0\) is

$$\begin{aligned} \beta -v<-\frac{\left( \phi +v\right) \left( 1-v\right) }{\phi }, \end{aligned}$$


$$\begin{aligned} \left| \beta -v\right| >\overline{{\overline{d}}} \equiv \frac{\left( \phi +v\right) \left( 1-v\right) }{\phi }\mathbf {.} \end{aligned}$$

Because \(\overline{{\overline{d}}}>\)\({\overline{d}},\) this completes the proof. \(\square\)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Femminis, G., Piccirilli, G. Public information, education and welfare. Econ Polit 37, 137–166 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


JEL Classification