Skip to main content

Advertisement

Log in

Bioengineering Renal Epithelial-Like Cells from Mesenchymal Stem Cells by Combinations of Growth Factors and Small Molecules

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

This research aimed to differentiate mouse adipose-derived mesenchymal stem cells (mAd-MSCs) into renal epithelial-like cells.

Methods

Three treatments (T1, T2, and T3), with combinations of growth factors and small molecules, were used in stem cell signature mAd-MSCs in a defined serum-free culture medium. The growth factors and chemicals included were HGF, IGF, PDGF, FGF2, Bmp7, and RepSox, CHIR99021, respectively. The reprogrammed cells and their respective controls were evaluated by transcriptional and translational analyses. Albumin binding and uptake co-localization assays and co-culturing of differentiated cells with murine adult renal cortical cells were also observed.

Results

The inductive signals via three treatments using growth factors and small molecules produced morphological dynamics from spindle shape to squared shape epithelial-like cells. The molecular analysis revealed elevated expressions of Pdpn, Cd2ap/Mets1, Agt. Jag1, Erk2/Mapk, and P-cadherin/Cdh3 with low gene expression of Tgf-β1. Nphs2/Podocin and Ksp/Cdh16 were expressed in protein analyses of differentiated cells, while CD44 was declined. Functionally, the differentiated cells exhibit albumin endocytosis via megalin receptor expression. The fusion of reprogrammed cells with murine cortical renal epithelial cells presented further connections, integration stability, and growth of cells for up to 10 days.

Conclusion

Our novel strategy of reprogramming displayed efficient commitments of MSCs toward renal epithelial-like cells with not only an orchestration of gene and protein expressions but also functional commitment. The study supplemented information for the ex-vivo reprogramming of MSCs into renal epithelialization, which led to the development of a novel regenerative approach.

Lay Summary

Kidney diseases are increasing worldwide and have become the leading cause of death. The regeneration capabilities of kidneys are up to an extent, and insufficiency leads to hemodialysis in kidney patients, especially for chronic kidney diseases, as a therapeutic option. Currently, the gold standard is kidney transplantation, for which a donor kidney must be required. The donor’s kidney is lacking, and currently, no functional artificial organ is available. Several stem cell approaches are being investigated for a better treatment option through simple or modified cells to restore kidney homeostasis. This study is to investigate the role of growth factors and small molecules in combination, for renal epithelial-like cell generation from an easy source of stem cells, i.e., adipose-derived mesenchymal stem cells. The reprogramming approach proved successful, and it not only induced differentiation but also exhibited gene and protein expression of functional attributes. The cells displayed morphological variability from spindle to a prominent typical cobblestone shape. They have the capability of albumin uptake via megalin receptors and have physiologic integration capability with renal epithelial cells, which was tested for up to 10 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

I declare that I have no other data to share. All the information is included in the manuscript.

References

  1. Imberti B, Tomasoni S, Ciampi O, Pezzotta A, Derosas M, Xinaris C, Rizzo P, Papadimou E, Novelli R, Benigni A, Remuzzi G. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci Rep. 2015;5(1):8826. https://doi.org/10.1038/srep08826.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rose V, Müller-Deile J. Generation of patient-derived podocytes from skin biopsies. JoVE. 2023;195: e65364. https://doi.org/10.3791/65364.

    Article  Google Scholar 

  3. Chou YH, Pan SY, Yang CH, Lin SL. Stem cells and kidney regeneration. J Formos Med Assoc. 2014;113(4):201–9. https://doi.org/10.1016/j.jfma.2013.12.001.

    Article  CAS  PubMed  Google Scholar 

  4. Bhattacharyya S, Kumar A, Lal KK. The voyage of stem cell toward terminal differentiation: a brief overview. Acta Biochim Biophys Sin. 2012;44(6):463–75. https://doi.org/10.1093/abbs/gms027.

    Article  CAS  PubMed  Google Scholar 

  5. Bejoy J, Farry JM, Peek JL, Cabatu MC, Williams FM, Welch RC, Qian ES, Woodard LE. Podocytes derived from human induced pluripotent stem cells: characterization, comparison, and modeling of diabetic kidney disease. Stem Cell Res & Ther. 2022;13(1):355. https://doi.org/10.1186/s13287-022-03040-6.

    Article  CAS  Google Scholar 

  6. Ranghini E, Mora CF, Edgar D, Kenny SE, Murray P, Wilm B. Stem cells derived from neonatal mouse kidney generate functional proximal tubule-like cells and integrate into developing nephrons in vitro. PLoS ONE. 2013;8(5): e62953. https://doi.org/10.1371/journal.pone.0062953.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu K, Yu C, Xie M, Li K, Ding S. Chemical modulation of cell fate in stem cell therapeutics and regenerative medicine. Cell Chem Biol. 2016;23(8):893–916. https://doi.org/10.1016/j.chembiol.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  8. Qian T, Hernday SE, Bao X, Olson WR, Panzer SE, Shusta EV, Palecek SP. Directed differentiation of human pluripotent stem cells to podocytes under defined conditions. Sci Rep. 2019;9(1):2765. https://doi.org/10.1038/s41598-019-39504-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tran T, Lindström NO, Ransick A, Brandine GD, Guo Q, Kim AD, Der B, Peti-Peterdi J, Smith AD, Thornton M, Grubbs B. In vivo developmental trajectories of human podocyte inform in vitro differentiation of pluripotent stem cell-derived podocytes. Dev cell. 2019;50(1):102–16. https://doi.org/10.1016/j.devcel.2019.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang M, Han YM. Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system. PLoS ONE. 2014;9(4): e94888. https://doi.org/10.1371/journal.pone.0094888.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Begum S, Ahmed N, Mubarak M, Mateen SM, Khalid N, Rizvi SA. Modulation of renal parenchyma in response to allogeneic adipose-derived mesenchymal stem cells transplantation in acute kidney injury. Int J Stem Cells. 2019;12(1):125–38. https://doi.org/10.15283/ijsc18091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papadimou E, Morigi M, Iatropoulos P, Xinaris C, Tomasoni S, Benedetti V, Longaretti L, Rota C, Todeschini M, Rizzo P, Introna M. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts. Stem Cell Rep. 2015;4(4):685–98. https://doi.org/10.1016/j.stemcr.2015.02.002.

    Article  CAS  Google Scholar 

  13. Castrop H, Schießl IM. Novel routes of albumin passage across the glomerular filtration barrier. Acta Physiol. 2017;219(3):546–55. https://doi.org/10.1111/apha.12760.

    Article  CAS  Google Scholar 

  14. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini PM, Prat M. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem cells. 2006;24(1):23–33. https://doi.org/10.1634/stemcells.2004-0176.

    Article  CAS  PubMed  Google Scholar 

  15. Bridgewater DJ, Ho J, Sauro V, Matsell DG. Insulin-like growth factors inhibit podocyte apoptosis through the PI3 kinase pathway. Kidney Int. 2005;67(4):1308–14. https://doi.org/10.1111/j.1523-1755.2005.00208.x.

    Article  CAS  PubMed  Google Scholar 

  16. Gilbertson DG, Duff ME, West JW, Kelly JD, Sheppard PO, Hofstrand PD, Gao Z, Shoemaker K, Bukowski TR, Moore M, Feldhaus AL. Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF α and β receptor. J Biol Chem. 2001;276(29):27406–14. https://doi.org/10.1074/jbc.M101056200.

    Article  CAS  PubMed  Google Scholar 

  17. Gellibert F, Woolven J, Fouchet MH, Mathews N, Goodland H, Lovegrove V, Laroze A, Nguyen VL, Sautet S, Wang R, Janson C. Identification of 1, 5-naphthyridine derivatives as a novel series of potent and selective TGF-β type I receptor inhibitors. J Med Chem. 2004;47(18):4494–506. https://doi.org/10.1021/jm0400247.

    Article  CAS  PubMed  Google Scholar 

  18. Ebrahimi B. Chemicals as the sole transformers of cell fate. Int J Stem Cells. 2016;9(1):9–20. https://doi.org/10.15283/ijsc.2016.9.1.9.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  19. Musah S, Mammoto A, Ferrante TC, Jeanty SS, Hirano-Kobayashi M, Mammoto T, Roberts K, Chung S, Novak R, Ingram M, Fatanat-Didar T. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1(5):0069. https://doi.org/10.1038/s41551-017-0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rauch C, Feifel E, Kern G, Murphy C, Meier F, Parson W, Beilmann M, Jennings P, Gstraunthaler G, Wilmes A. Differentiation of human iPSCs into functional podocytes. PLoS ONE. 2018;13(9): e0203869. https://doi.org/10.1371/journal.pone.0203869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamanaka S, Yokoo T. Current bioengineering methods for whole kidney regeneration. Stem Cells Int. 2015; 2015. https://doi.org/10.1155/2015/724047.

  22. Reiser J, Altintas MM. Podocytes. F1000Research. 2016;5. https://doi.org/10.12688/f1000research.7255.1

  23. Davidson G, Dono R, Zeller R. FGF signalling is required for differentiation-induced cytoskeletal reorganisation and formation of actin-based processes by podocytes. J Cell Sci. 2001;114(18):3359–66. https://doi.org/10.1242/jcs.114.18.3359.

    Article  CAS  PubMed  Google Scholar 

  24. Kazama I, Mahoney Z, Miner JH, Graf D, Economides AN, Kreidberg JA. Podocyte-derived BMP7 is critical for nephron development. J Am Soc Nephrol. 2008;19(11):2181–91. https://doi.org/10.1681/ASN.2007111212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dudley AT, Godin RE, Robertson EJ. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13(12):1601–13. https://doi.org/10.1101/gad.13.12.1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kreidberg JA. WT1 and kidney progenitor cells. Organogenesis. 2010;6(2):61–70. https://doi.org/10.4161/org.6.2.11928.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ijpelaar DH, Schulz A, Koop K, Schlesener M, Bruijn JA, Kerjaschki D, Kreutz R, de Heer E. Glomerular hypertrophy precedes albuminuria and segmental loss of podoplanin in podocytes in Munich-Wistar-Fromter rats. Am J Physiol Renal Physiol. 2008;294(4):F758-67. https://doi.org/10.1152/ajprenal.00457.2007.

    Article  CAS  PubMed  Google Scholar 

  28. Koop K, Eikmans M, Wehland M, Baelde H, Ijpelaar D, Kreutz R, Kawachi H, Kerjaschki D, de Heer E, Bruijn JA. Selective loss of podoplanin protein expression accompanies proteinuria and precedes alterations in podocyte morphology in a spontaneous proteinuric rat model. Am J Pathol. 2008;173(2):315–26. https://doi.org/10.2353/ajpath.2008.080063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding WY, Saleem MA. Current concepts of the podocyte in nephrotic syndrome. Kidney Res Clin Pract. 2012;31(2):87–93. https://doi.org/10.1016/j.krcp.2012.04.323.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liebau MC, Lang D, Bohm J, Endlich N, Bek MJ, Witherden I, Mathieson PW, Saleem MA, Pavenstadt H, Fischer KG. Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal Physiol. 2006;290(3):F710–9. https://doi.org/10.1152/ajprenal.00475.2004.

    Article  CAS  PubMed  Google Scholar 

  31. Burns KD, Hiremath S. Urinary angiotensinogen as a biomarker of chronic kidney disease: ready for prime time? Nephrol Dial Transplant. 2012;27(8):3010–3. https://doi.org/10.1093/ndt/gfs166.

    Article  CAS  PubMed  Google Scholar 

  32. Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol. 2012;226(2):394–403. https://doi.org/10.1002/path.2967.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng HT, Kopan R. The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. Kidney Int. 2005;68(5):1951–2. https://doi.org/10.1111/j.1523-1755.2005.00627.x.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18. https://doi.org/10.1038/sj.cr.7290105.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  35. Fanni D, Fanos V, Gerosa C, Senes G, Sanna A, Van Eyken P, Iacovidou N, Monga G, Faa G. CD44 immunoreactivity in the developing human kidney: a marker of renal progenitor stem cells? Ren Fail. 2013;35(7):967–70. https://doi.org/10.3109/0886022X.2013.808955.

    Article  PubMed  Google Scholar 

  36. Crisi GM, Marconi SA, Rockwell GF, Braden GL, Campfield TJ. Immuno-localization of CD44 and osteopontin in developing human kidney. Pediatric Res. 2009;65(1):79–84. https://doi.org/10.1203/PDR.0b013e31818912b7.

    Article  CAS  Google Scholar 

  37. Igarashi P, Shashikant CS, Thomson RB, Whyte DA, Liu-Chen S, Ruddle FH, Aronson PS. Ksp-cadherin gene promoter. II. Kidney-specific activity in transgenic mice. Am J Physiol Renal Physiol. 1999;277(4):F599-610. https://doi.org/10.1152/ajprenal.1999.277.4.F599.

    Article  CAS  Google Scholar 

  38. Morizane R, Monkawa T, Fujii S, Yamaguchi S, Homma K, Matsuzaki Y, Okano H, Itoh H. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells. PLoS ONE. 2013;8(6): e64843. https://doi.org/10.1371/journal.pone.0064843.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neal CR. Podocytes… what’s under yours? (Podocytes and foot processes and how they change in nephropathy). Front Endocrinol. 2015;6:9. https://doi.org/10.3389/fendo.2015.00009.

    Article  Google Scholar 

  40. Yamazaki H, Saito A, Ooi H, Kobayashi N, Mundel P, Gejyo F. Differentiation-induced cultured podocytes express endocytically active megalin, a heymann nephritis antigen. Nephron Exp Nephrol. 2004;96(2):e52–8. https://doi.org/10.1159/000076404.

    Article  CAS  PubMed  Google Scholar 

  41. Kreidberg JA. Podocyte differentiation and glomerulogenesis. J Am Soc Nephrol. 2003;14(3):806–14. https://doi.org/10.1097/01.ASN.0000054887.42550.14.

    Article  PubMed  Google Scholar 

  42. Mathieson PW. Podocyte actin in health, disease and treatment. Nephrol Dia Transplant. 2010;25(6):1772–3. https://doi.org/10.1093/ndt/gfq121.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge that all research work was performed and analyzed at the same institution.

Funding

The research funds were provided by the Sindh Institute of Urology and Transplantation (SIUT), Karachi (74200), Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

Begum S designed the entire project, conducted experiments, analyzed, compiled, and interpreted the data, and also finalized the draft of the manuscript. Mateen SM performed experimental techniques, including RT-qPCR and ICC. Rizvi SAH was involved in the conception, support, commenting, and editing of the manuscript.

Corresponding author

Correspondence to Sumreen Begum.

Ethics declarations

Ethics Approval

This study was approved by the Institutional Animal Care and Use Committee.

Informed Consent

There are no human subjects involved and informed consent is not applicable.

Competing Interests

The authors declare no competing interests.

Human and Animal Rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 145 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, S., Mateen, S.M. & Rizvi, S.A.H. Bioengineering Renal Epithelial-Like Cells from Mesenchymal Stem Cells by Combinations of Growth Factors and Small Molecules. Regen. Eng. Transl. Med. (2024). https://doi.org/10.1007/s40883-024-00337-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40883-024-00337-1

Keywords

Navigation