Skip to main content

Advertisement

Log in

Non-Invasive Imaging Modalities for Stem Cells Tracking in Osteoarthritis

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

The administration of stem cells in regenerative medicine has emerged as a potential treatment option for many diseases. The privation of an impressive cure for joint pathologies such as knee osteoarthritis (OA) has increased concern in stem cell (SC)-based therapies.

Method

Searching for articles published in English from 1990 to 2022 using scientific keywords in Scopus and PubMed databases included in this comparative review study.

Result

Many questions remain about the survival and biology of SC after transplantation. Over time, non-invasive SC monitoring has been updated to assess the viability and biology of SC transplantation. The use of nanoparticles has become important in many aspects of SCs tracking. Given that different tracking strategies are being used for clinical trials, it is important to choose the best one.

Conclusion

In this review, various imaging methods, which were assimilated to monitor the viability and biology of SC after injection in osteoarthritis, were discussed.

Lay Summary

OA is a disabling disease which has different therapeutic including drugs or surgery. The aim of our study was to pool available data to obtain the most effective option for cell tracking in OA. Current progression in molecular biology and imaging has accredited winsome non-invasive SC monitoring in living subjects. Further effort should be placed on multimodal imaging techniques, which may minimize the potential venture of using any imaging technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data used in the current study are available from the corresponding authors on reasonable request.

Code Availability

There is no code in the manuscript.

Abbreviations

OA :

osteoarthritis

SC :

stem cells

RMT :

regenerative medicine therapies

SPECT :

single photon emission tomography

PET :

positron emission tomography

MRI :

magnetic resonance imaging

MSCs :

mesenchymal stem cells

BM-MSCs :

bone marrow derived mesenchymal stem cells

ADMSs :

adipose derived mesenchymal stem cells

ESC :

embryonic stem cells

iPSCs :

induced pluripotent stem cells

QD :

quantum dot

FL :

fluorescence

References

  1. Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet. 2020;396(10264):1711–2.

    Article  PubMed  Google Scholar 

  2. Holden MA, Nicolson PJ, Thomas MJ, Corp N, Hinman RS, Bennell KL. Osteoarthritis year in review 2022: rehabilitation. Osteoarthr. Cartil. 2023;31(2):177–86.

  3. Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee osteoarthritis: epidemiology, pathogenesis, and mesenchymal stem cells: what else is new? An update. Int. J. Mol. Sci. 2023;24(7):6405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Migliorini F, Tingart M, Maffulli N. Progress with stem cell therapies for tendon tissue regeneration. Expert Opin. Biol. Ther. 2020;20(11):1373–9.

    Article  PubMed  Google Scholar 

  5. Hashemibeni B, Pourentezari M, Valiani A, Dortaj H, Hassanpour A, Sharifian Z, et al. Impact of fibrin on the chondrogenic avocado soybean unsaponifiables on poly (Lactic-co-Glycolic) acid scaffold. Biointerface Res. Appl. Chem. 2021;11(4):11525–34.

    CAS  Google Scholar 

  6. Wang W, Chu Y, Zhang P, Liang Z, Fan Z, Guo X, et al. Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int. Immunopharmacol. 2023;116:109790.

    Article  CAS  PubMed  Google Scholar 

  7. Berenbaum F, Walker C. Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad. Med. 2020;132(4):377–84.

    Article  CAS  PubMed  Google Scholar 

  8. Bassi G, Grimaudo MA, Panseri S, Montesi M. Advanced multi-dimensional cellular models as emerging reality to reproduce in vitro the human body complexity. Int. J. Mol. Sci. 2021;22(3):1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pourentezari M, Anvari M, Yadegari M, Abbasi A, Dortaj H. A review of tissue-engineered cartilage utilizing fibrin and its composite. International Journal of Medical. Laboratory. 2021;8(1):1–9.

  10. Abd-Elsayed A. Stem cells for the treatment of knee osteoarthritis: a comprehensive review. Pain physician. 2018;21:229–41.

    Article  PubMed  Google Scholar 

  11. Teixeira SP, Domingues RM, Shevchuk M, Gomes ME, Peppas NA, Reis RL. Biomaterials for sequestration of growth factors and modulation of cell behavior. Adv. Funct. Mater. 2020;30(44):1909011.

    Article  CAS  Google Scholar 

  12. Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, et al. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen. Med. 2017;2(1):1–13.

  13. Zhao W. Progress of stem cell research in knee osteoarthritis. Highlights Sci. Eng. Technol. 2023;36:1421–6.

    Article  Google Scholar 

  14. Ma X, Luan Z, Li J. Inorganic nanoparticles-based systems in biomedical applications of stem cells: opportunities and challenges. Int. J. Nanomedicine. 2023;18:143–82. https://doi.org/10.2147/IJN.S384343.

  15. Marenah M, Li J, Kumar A, Murrell W. Quality assurance and adverse event management in regenerative medicine for knee osteoarthritis: current concepts. J. clin. orthop. trauma. 2019;10(1):53–8.

    Article  PubMed  Google Scholar 

  16. Zavatti M, Beretti F, Casciaro F, Bertucci E, Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis. Biofactors. 2020;46(1):106–17.

    Article  CAS  PubMed  Google Scholar 

  17. Lim NH, Wen C, Vincent TL. Molecular and structural imaging in surgically induced murine osteoarthritis. Osteoarthr. Cartil. 2020;28(7):874–884.

  18. Yi W, Zhou H, Li A, Yuan Y, Guo Y, Li P, et al. A NIR-II fluorescent probe for articular cartilage degeneration imaging and osteoarthritis detection. Biomater. Sci. 2019;7(3):1043–51.

    Article  CAS  PubMed  Google Scholar 

  19. Oliveira JM, Carvalho L, Silva-Correia J, Vieira S, Majchrzak M, Lukomska B, et al. Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. NPJ Regen. Med. 2018;3(1):1–9.

    Article  Google Scholar 

  20. Sulastri D, Arnadi A, Afriwardi A, Desmawati D, Amir A, Irawati N, et al. Risk factor of elevated matrix metalloproteinase-3 gene expression in synovial fluid in knee osteoarthritis women. PloS one. 2023;18(3):e0283831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salman LA, Ahmed G, Dakin SG, Kendrick B, Price A. Osteoarthritis: a narrative review of molecular approaches to disease management. Arthritis Res. Ther. 2023;25(1):1–9.

    Article  Google Scholar 

  22. Kumar AH. Discovery and development of stem cells for therapeutic applications. Drug Discovery and development: from targets and molecules to medicines. Singapore: Springer; 2021. p. 267–96.

    Google Scholar 

  23. Jacob G, Shimomura K, Nakamura N. Osteochondral injury, management and tissue engineering approaches. Front. Cell Dev. Biol. 2020:8.

  24. Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int. J. Mol. Sci. 2017;18(10):2087.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bertoni L, Branly T, Jacquet S, Desancé M, Desquilbet L, Rivory P, et al. Intra-articular injection of 2 different dosages of autologous and allogeneic bone marrow-and umbilical cord-derived mesenchymal stem cells triggers a variable inflammatory response of the fetlock joint on 12 sound experimental horses. Stem Cells Int. 2019;2019:9431894.

  26. Whitehouse MR, Howells NR, Parry MC, Austin E, Kafienah W, Brady K, et al. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl. Med. 2017;6(4):1237–48.

    Article  CAS  PubMed  Google Scholar 

  27. Huang X, Wang Z, Wang H, Chen D, Tong L. Novel strategies for the treatment of osteoarthritis based on biomaterials and critical molecular signaling. J. Mater. Sci. Technol. 2023;149(20):42–55.

  28. Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioactive mater. 2021;6(3):666–83.

    Article  CAS  Google Scholar 

  29. Jo CH, Chai JW, Jeong EC, Oh S, Shin JS, Shim H, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. Am. J. Sports Med. 2017;45(12):2774–83.

    Article  PubMed  Google Scholar 

  30. Branly T, Contentin R, Desancé M, Jacquel T, Bertoni L, Jacquet S, et al. Improvement of the chondrocyte-specific phenotype upon equine bone marrow mesenchymal stem cell differentiation: influence of culture time, transforming growth factors and type I collagen siRNAs on the differentiation index. Int. J. Mol. Sci. 2018;19(2):435.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang K, Li Q, Li Y, Yao Z, Luo D, Rao P, et al. Cartilage tissue regeneration: the roles of cells, stimulating factors and scaffolds. Curr. Stem Cell Res. Ther. 2018;13(7):547–67.

    Article  CAS  PubMed  Google Scholar 

  32. Yang M, Wen T, Chen H, Deng J, Yang C, Zhang Z. Knockdown of insulin-like growth factor 1 exerts a protective effect on hypoxic injury of aged BM-MSCs: role of autophagy. Stem Cell Res. Ther. 2018;9(1):1–17.

    Article  Google Scholar 

  33. Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int. J. Mol. Sci. 2019;20(10):2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun Y, Chen S, Pei M. Comparative advantages of infrapatellar fat pad: an emerging stem cell source for regenerative medicine. Rheumatology. 2018;57(12):2072–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim HJ, Park J-S. Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev. Reprod. 2017;21(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rossant J, Tam PP. Opportunities and challenges with stem cell-based embryo models. Stem Cell Reports. 2021.

  37. Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. Ther. 2017;8(1):1–13.

    Article  Google Scholar 

  38. Jiang Y, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 2015;11(4):206.

    Article  PubMed  Google Scholar 

  39. Panadero J, Lanceros-Mendez S, Ribelles JG. Differentiation of mesenchymal stem cells for cartilage tissue engineering: individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater. 2016;33:1–12.

    Article  CAS  PubMed  Google Scholar 

  40. Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Varli HS, Alkan F, Demirbilek M, Türkoğlu N. A virus-free vector for the transfection of somatic cells to obtain IPSC. J. Nanopart. Res. 2019;21(11):1–11.

    Article  Google Scholar 

  42. Murphy C, Mobasheri A, Táncos Z, Kobolák J, Dinnyés A. The potency of induced pluripotent stem cells in cartilage regeneration and osteoarthritis treatment. Cell Biol. Transl. Med. 2017;1:55–68.

    Google Scholar 

  43. Zhang M, Shi J, Xie M, Wen J, Niibe K, Zhang X, et al. Recapitulation of cartilage/bone formation using iPSCs via biomimetic 3D rotary culture approach for developmental engineering. Biomaterials. 2020;260:120334.

    Article  CAS  PubMed  Google Scholar 

  44. Wolfs E, Verfaillie CM, Van Laere K, Deroose CM. Radiolabeling strategies for radionuclide imaging of stem cells. Stem Cell Rev. Rep. 2015;11(2):254–74.

    Article  CAS  PubMed  Google Scholar 

  45. Bulte JW, Daldrup-Link HE. Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology. 2018;289(3):604–15.

    Article  PubMed  Google Scholar 

  46. Kim MH, Lee YJ, Kang JH. Stem cell monitoring with a direct or indirect labeling method. Nucl. Med. Mol. Imaging. 2016;50(4):275–83.

    Article  CAS  PubMed  Google Scholar 

  47. Li M, Luo X, Lv X, Liu V, Zhao G, Zhang X, et al. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res. Ther. 2016;7(1):1–13.

    Article  Google Scholar 

  48. Chen G, Zhang Y, Li C, Wang Q. Near infrared Ag 2 S quantum dots: synthesis, functionalization, and in vivo stem cell tracking applications. Near Infrared-Emitting Nanoparticles for Biomedical Applications: Springer; 2020. p. 279–304.

    Google Scholar 

  49. Jurgielewicz P, Harmsen S, Wei E, Bachmann MH, Ting R, Aras O. New imaging probes to track cell fate: reporter genes in stem cell research. Cell. Mol. Life Sci. 2017;74(24):4455–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang C, Tian R, Liu T, Liu G. MRI reporter genes for noninvasive molecular imaging. Molecules. 2016;21(5):580.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Accomasso L, Gallina C, Turinetto V, Giachino C. Stem cell tracking with nanoparticles for regenerative medicine purposes: an overview. Stem Cells Int. 2016. https://doi.org/10.1155/2016/7920358.

  52. Santoso MR, Yang PC. Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem cells international. 2016;2016.

  53. Lee S, Yoon HI, Na JH, Jeon S, Lim S, Koo H, et al. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomaterials. 2017;139:12–29.

    Article  CAS  PubMed  Google Scholar 

  54. Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials. 2018;11(7):1154.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yi DK, Nanda SS, Kim K, Selvan ST. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J. Mater. Chem. B2017;5(48):9429-9451.

  56. Wang X, Wang X, Bai X, Yan L, Liu T, Wang M, et al. Nanoparticle ligand exchange and its effects at the nanoparticle–cell membrane interface. Nano Lett. 2018;19(1):8–18.

    Article  PubMed  Google Scholar 

  57. Ahn YJ, Kong TH, Choi JS, Yun WS, Key J, Seo YJ. Strategies to enhance efficacy of SPION-labeled stem cell homing by magnetic attraction: a systemic review with meta-analysis. Int. J. Nanomedicine. 2019;14:4849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Rajendran RL, et al. In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. Stem Cells Int. 2017;2017.

  59. Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomedicine. 2015;10:1727.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Flogel U, Ahrens E. Fluorine magnetic resonance imaging. CRC Press; 2016.

    Book  Google Scholar 

  61. Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int. J. Nanomedicine. 2014;9:1641.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hachani R. Development of novel magnetic nanoparticles to track stem cells in tissue-engineered organs: UCL. (University College London); 2018.

  63. Zhang M, Li S, Zhang H, Xu H. Research progress of 18F labeled small molecule positron emission tomography (PET) imaging agents. Eur. J. Med. Chem. 2020;1(205):112629. https://doi.org/10.1016/j.ejmech.2020.112629.

  64. De Vasconcelos Caribé PRR. Evaluation of image quality and reconstruction parameters in recent PET-CT and PET-MR. systems: Ghent University; 2020.

    Google Scholar 

  65. Kurebayashi Y, Choyke PL, Sato N. Imaging of cell-based therapy using 89Zr-oxine ex vivo cell labeling for positron emission tomography. Nanotheranostics. 2021;5(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim SH, Park JH, Kwon JS, Cho JG, Park KG, Park CH, et al. NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. Biomaterials. 2020;258:120267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. TrAC Trends Anal. Chem. 2020;116092

  68. Jing X-h, Yang L, Duan X-j, Xie B, Chen W, Li Z, et al. In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine. 2008;75(4):432–8.

    Article  PubMed  Google Scholar 

  69. Sutton EJ, Boddington SE, Nedopil AJ, Henning TD, Demos SG, Baehner R, et al. An optical imaging method to monitor stem cell migration in a model of immune-mediated arthritis. Opt. Express. 2009;17(26):24403–13.

    Article  CAS  PubMed  Google Scholar 

  70. Nedopil A, Klenk C, Kim C, Liu S, Wendland M, Golovko D, et al. MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix-associated stem cell implants for treatment of osteoarthritis. Invest. Radiol. 2010;45(10):634–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Buul GM, Kotek G, Wielopolski PA, Farrell E, Bos PK, Weinans H, et al. Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides. PloS one. 2011;6(2):e17001.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Daldrup-Link HE, Nejadnik H. MR imaging of stem cell transplants in arthritic joints. J. Stem Cell Res. Ther. 2014;4(2):165.

    PubMed  PubMed Central  Google Scholar 

  73. Peng B-Y, Chiou C-S, Dubey NK, Yu S-H, Deng Y-H, Tsai F-C, et al. Correction: non-invasive in vivo molecular imaging of intra-articularly transplanted immortalized bone marrow stem cells for osteoarthritis treatment. Oncotarget. 2018;9(38):25383.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Markides H, Newell KJ, Rudorf H, Ferreras LB, Dixon JE, Morris RH, et al. Ex vivo MRI cell tracking of autologous mesenchymal stromal cells in an ovine osteochondral defect model. Stem Cell Res. Ther. 2019;10(1):1–15.

    Article  Google Scholar 

  75. Xie M, Luo S, Li Y, Lu L, Deng C, Cheng Y, et al. Intra-articular tracking of adipose-derived stem cells by chitosan-conjugated iron oxide nanoparticles in a rat osteoarthritis model. RSC Adv. 2019;9(21):12010–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaggie JD, Markides H, Graves MJ, MacKay J, Houston G, El Haj A, et al. Ultra Short echo time MRi of iron-labelled mesenchymal stem cells in an ovine osteochondral defect model. Sci. Rep. 2020;10(1):1–10.

    Google Scholar 

  77. Nasb M, Liangjiang H, Gong C, Hong C. Human adipose-derived Mesenchymal stem cells, low-intensity pulsed ultrasound, or their combination for the treatment of knee osteoarthritis: study protocol for a first-in-man randomized controlled trial. BMC Musculoskelet. Disord. 2020;21(1):1–8.

    Article  Google Scholar 

  78. Sandu N, Rosemann T, Schaller B. Molecular imaging and tracking stem cells in neurosciences. Imaging and Tracking Stem Cells. Methods Mol. Biol. 2020:1–9. https://doi.org/10.1007/7651_2019_218.

  79. Klontzas ME, Kakkos GA, Papadakis GZ, Marias K, Karantanas AH. Advanced clinical imaging for the evaluation of stem cell based therapies. Expert Opin. Biol. Ther. 2021;21(9):1253–1264.

  80. Khatkar H, See A. Stem cell therapy in the management of fracture non-union–evaluating cellular mechanisms and clinical progress. Cureus. 2021;13(3)

Download references

Acknowledgements

No financial support was obtained from any institution in this study. The authors would like to thank Mr. Shahrad Khosravi radiology technologist in Shahvali hospital for his useful comments.

Author information

Authors and Affiliations

Authors

Contributions

HD and NA conceived and designed the format of the manuscript. All authors contributed to the discussion. AA, NA, and LT drafted and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Negar Azarpira.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dortaj, H., Alizadeh, A.A., Azarpira, N. et al. Non-Invasive Imaging Modalities for Stem Cells Tracking in Osteoarthritis. Regen. Eng. Transl. Med. 10, 9–18 (2024). https://doi.org/10.1007/s40883-023-00305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-023-00305-1

Keywords

Navigation