Skip to main content

Advertisement

Log in

Ovarian Microenvironment Modulation by Adipose-Mesenchymal Stem Cells and Photobiomodulation Can Alter Osteoblasts Functions In Vitro

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

In tissue engineering and regenerative medicine, stem cells are used to produce tissues and organs for both physiological and clinical applications. The interactions among different organs and systems are controlled by chemical and physical stimuli, such as those induced by mesenchymal stem cells (MSC) and photobiomodulation (PBM), respectively. The aim of the present study was to investigate the effects of adipose-derived MSC (AdMSC) and PBM modulations in adult female rat ovaries induced to polycystic ovary syndrome (PCOS), in terms of the number of bone marrow stromal cells obtained and the differentiation of these cells into osteoblasts during 14 days of in vitro culture.

Methods

Bone marrow cells were cultured for 14 days, in the absence and presence of testosterone, prior to analysis of different cellular parameters. The data were analyzed using ANOVA and Fisher’s tests, with statistically significant differences among the means considered for p < 0.05.

Results

For all groups, the highest mean cell number was obtained after 60 days of in vivo treatments. PBM for 30 days and AdMSC for 60 days positively influenced the cell number before cell differentiation. After 14 days in an osteogenic medium, cell multiplication, cell viability, mineralization, and alkaline phosphatase activity were modulated by the chemical and physical treatments, as well as by testosterone.

Conclusion

The proposed model suggests that ovarian microenvironment modulations induced by mesenchymal stem cells, photobiomodulation, and testosterone can alter the behavior of osteoblasts cultured for 14 days.

Lay Summary

Homeostasis among organs and systems is maintained by complex mechanisms that interact in precisely and continuously ways, controlled by hormones including local autocrine and paracrine signals and systemic endocrine signals. These biomolecules maintain the dynamic balance of organic microenvironments and can be modulated by mesenchymal stem cells. Physical stimuli, such as photobiomodulation, can also modulate tissue functions and the interaction among organs. Hence, knowing the cell microenvironment control mechanisms is an essential aspect of tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Inter. 2014;2014:18. https://doi.org/10.1155/2014/921905

  2. Nurkovic J, Zaletel I, Nurkovic S, Hajrovic S, Mustafic F, Isma J, Skevin AJ, Grbovic V, Filipovic MK, Dolicanin Z. Combined effects of electromagnetic field and low-level laser increase proliferation and later the morphology of human adipose tissue-derived mesenchymal stem cells. Laser Med Sci. 2017;32(1):151–60.

    Article  Google Scholar 

  3. Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Cell Res Therapy. 2019;10(327):2–13.

    Google Scholar 

  4. Aasebø E, Birkeland E, Sekheim F, Berven F, Brenner AK, Bruserud Ø. The extracellular bone marrow microenvironment – a proteomic comparison of constitutive protein release by in vitro cultured osteoblast and mesenchymal stem cells. Cancer. 2020;13(62):2–24.

    Google Scholar 

  5. Volponi AA, Pang Y, Sharpe PR. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010;20:715–22.

    Article  CAS  Google Scholar 

  6. Daley GQ. The promise and perils of stem cell therapeutics. Cell Stem Cell. 2012;10:740–9.

    Article  CAS  Google Scholar 

  7. Grayson WL, Brunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015;11:140–50.

    Article  CAS  Google Scholar 

  8. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22.

    Article  CAS  Google Scholar 

  9. Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: a view of microenvironment modulation. Int J Oral Sci. 2019;11:23.

    Article  Google Scholar 

  10. Lane SW, Williams DA, Watt FM. Modulation the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32:795–803.

    Article  CAS  Google Scholar 

  11. Loeffler J, Duda GN, Saa FA, Dienelt A. The metabolic microenvironment steers bone tissue regeneration. Trends Endocrinol Metab. 2018;29:99–110.

    Article  CAS  Google Scholar 

  12. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324–36.

    Article  CAS  Google Scholar 

  13. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.

    Article  Google Scholar 

  14. Gomez-Salazar M, Gonzales-Galofre ZN, Casamitijana J, Crisan M, James AW, Péault B. Five decades later, are mesenchymal stem cells still relevant? Front Bioeng Biotechnol. 2020;8:148.

    Article  Google Scholar 

  15. Patil PSS. A comprehensive review on the role of various materials in the osteogenic differentiation of mesenchymal stem cells with a special focus on the association of heat shock protein and nanoparticles. Cell Tissues Organs. 2014;199(2–3):81–102.

    Article  CAS  Google Scholar 

  16. Dehghani SS, Babaee A, Shojaei M, Salehimejad P, Seyedi F, JalalKamali M, Nematollahi-Mahani SN. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells. Laser Med Sci. 2016;31(2):255–61.

    Article  Google Scholar 

  17. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Laser Surg Med. 2007;39(4):373–8.

    Article  Google Scholar 

  18. Soleimani M, Abbasnia E, Fathi M, Sahrarei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neuron and osteoblasts – an in vitro study. Laser Med Sci. 2012;27:423–30.

    Article  Google Scholar 

  19. Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H. Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Laser Med Sci. 2012;27:509–19.

    Article  Google Scholar 

  20. Horvat-Karajz K, Balogh Z, Kovacs V, Drrernat AH, Srete L, Uher F. In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med. 2009;41(6):463–9.

    Article  Google Scholar 

  21. Li WT, Leu YC, Wu JL. Red-light light-emitting diode irradiation increase the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg. 2010;28(Suppl 1):S157–65.

    Article  CAS  Google Scholar 

  22. Alves ED, Bonfá ALO, Pigatto GR, Anselmo-Franci JA, Achcar JA, Parizotto NA, Montrezor LH. Photobiomodulation can improve ovarian activity in polycystic ovary syndrome-induced rats. J Photochem Photobiol B Biol. 2019;194:6–13.

    Article  CAS  Google Scholar 

  23. Karu T. Mitochondrial signaling in mammalian cells activated by red and near-ir radiation. Photochem Photobiol. 2008;84:1091–9.

    Article  CAS  Google Scholar 

  24. Brawer JR, Munoz M, Farookhi R. Development of the polycystic ovarian condition (PCO) in the estradiol valerate-treated rat. Biol Reprod. 1986;35(3):647–55.

    Article  CAS  Google Scholar 

  25. Montrezor LH, Carvalho D, Dias MB, Anselmo-Franci JA, Bícego KC, Gargaglioni LH. Hypoxic and hypercapnic ventilatory responses in rats with polycystic ovaries. Resp Physiol Neurobiol. 2015;217:17–24.

    Article  Google Scholar 

  26. Bonfá ALO, Alves ED, Fabricio V, Nonaka KO, Anselmo-Franci JA, Achcar JA, Montrezor LH. Simultaneous alterations in ovaries and bone as a result of Polycystic Ovary Syndrome. Int J Adv Med Biotech. 2020;3(2):2–14.

    Article  Google Scholar 

  27. Wang H. Impairment of osteoblast differentiation due to proliferation-independent telomere dysfunction of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells Dev. 2012;16(3):467–80.

    Google Scholar 

  28. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254(2):317–30.

    Article  CAS  Google Scholar 

  29. Binder BYK, Sagun JE, Leach JK. Reduced serum and hypoxic culture conditions enhance the osteogenic potential of human mesenchymal stem cells. Stem Cell Rev. 2015;11(3):387–93.

    Article  CAS  Google Scholar 

  30. Brancaglião LFC, Bonfá ALO, Lemos JES, Rocha NF, Gonçalves VM, Montrezor LH. Effect of ovarian steroids on osteoblast viability and mineralization. Asian J Biol. 2017;2(3):1–18.

    Article  Google Scholar 

  31. Lemos JES, Brancaglião LFC, Bonfá ALO, Rocha NF, Gonçalves VM, Montrezor LH. Effects of culture time, fetal bovine serum, progesterone, testosterone and estradiol on alkaline phosphatase activity, extracellular matrix mineralization and osteoblast viability. The FASEB J. 2018;31(S1):723.6–723.6.

  32. Benevenuto LGD, Achcar JA, Barud HS, Montrezor LH. In vitro study of the effects of bacterial cellulose, glucose, and testosterone on the OSTEO-1 cells multiplication. The FASEB J. 2019;33(S1):602.2–602.2.

  33. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65(1–2):55–63.

    Article  CAS  Google Scholar 

  34. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329(1):77–84.

    Article  CAS  Google Scholar 

  35. Roy AV. Rapid method for determining alkaline phosphatase activity in serum with thymolphthalein monophosphate. Clin Chem. 1970;16(5):431–6.

    Article  CAS  Google Scholar 

  36. Halliwell B. Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J. 2014;37(3):99–105.

    Google Scholar 

  37. Wang CY, Liu LN, Zhao ZB. The role of ROS toxicity in spontaneous aneuploidy in cultured cells. Tissue Cell. 2013;45:47–53.

    Article  Google Scholar 

  38. Weinberg RA. The biology of cancer. 2nd ed. New York and London: Garland Press; 2014.

    Google Scholar 

  39. Martín-Romero FJ, Miguel-Lasobras EM, Domínguez-Arroyo JA, Gonzáles-Carrera E, Álvarez IS. Contribution of culture media to oxidative stress and its effect on human oocyte. RBM Online. 2008;17(5):652–61.

    Google Scholar 

  40. Tse SM, Rifas-Shiman SL, Coull BA, Litonjua AA, Oken E, Gold DR. Sex-specific risk factors for childhood wheeze and longitudinal phenotypes of wheeze. J Allergy Clin Immunol. 2016;138:1561-1568.e6.

    Article  Google Scholar 

  41. Regitz-Zagrosek V, Kararigas G. Mechanistic pathway of sex differences in cardiovascular diseases. Physiol Rev. 2017;97:1–37.

    Article  Google Scholar 

  42. Kim JY, Min K, Paik HY, Lee SK. Sex omission and male bias are still widespread in cell experiments. Am J Phsyiol Cell Physiol. 2021;320:C742–9.

    Article  CAS  Google Scholar 

  43. Tower J. Sex-specific gene expression and life span regulation. Trends Endocrinol Metab. 2017;28:735–47.

    Article  CAS  Google Scholar 

  44. Penaloza C, Estevez B, Orlanski S, Sikorska M, Walker R, Smith C, Smith B, Lockshin RA, Zakeri Z. Sex of the cell dictates its response: differential gene expression and sensitivity to cell death inducing stress in male and female cells. FASEB J. 2009;23:1869–79.

    Article  CAS  Google Scholar 

  45. Klein SL. Immune cells have sex and so should journal article. Endocrinology. 2012;153:2544–50.

    Article  CAS  Google Scholar 

  46. Colvard DS, Eriksen EF, Keeting PE, Wilson EM, Lubahn DB, French FS, Riggs BL, Spelsberg TC. Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Aca Sci USA. 1989;86:854–7.

    Article  CAS  Google Scholar 

  47. Kasperk C, Helmboldt A, Borcsok I, Heuthe S, Cloos O, Niethard F, Ziegler R. Skeletal site-dependent expression of the androgen receptor in human osteoblastic cell populations. Calcif Tissue Int. 1997;61:464–73.

    Article  CAS  Google Scholar 

  48. Wiren K, Keenan E, Zhang X, Tamsay B, Orwoll E. Homologous androgen receptor up-regulation in osteoblastic cells may be associated with enhanced functional androgen responsiveness. Endocrinol. 1999;140:3114–24.

    Article  CAS  Google Scholar 

  49. Chen J-F, Lin P-W, Tsai Y-R, Yang Y-C, Kang H-Y. Androgen and androgen receptor actions on bone health and disease: from androgen deficiency to androgen therapy. Cells. 2019;8:1318.

    Article  CAS  Google Scholar 

  50. Gruber R, Czerwenka K, Wolf F, Ho GM, Willheim M, Peterlik M. Expression of the vitamin D receptor, of estrogen and thyroid hormone receptor alpha- and beta-isoforms, and of the androgen receptor in cultures of native mouse bone marrow and of stroma/osteoblastic cells. Bone. 1999;24:465–73.

    Article  CAS  Google Scholar 

  51. Salinas I, Sinha N, Sen A. Androgen-induced epigenic modulations in the ovary. J Endocrinol. 2021;249:R53–64.

    Article  CAS  Google Scholar 

  52. Clarke BL, Kholsa S. Androgen and bone. Steroids. 2009;74:296–305.

    Article  CAS  Google Scholar 

  53. Boskey AL. Biomineralisation: conflicts, challenges, and opportunities. J Cell Biochem. 1998;30–31:83–91.

    Article  Google Scholar 

  54. Bourne LE, Wheeler-Jones CPD, Orriss IS. Regulation of mineralization in bone and vascular tissue: a comparative review. J Endocrinol. 2021;248(2):R51–65.

    Article  CAS  Google Scholar 

  55. Lin PW, Lan KC, Tsai MY, Shyr CR, Chang C, Huang KE, Kang HY. The differential effects of sex hormones on the bone metabolism in mice with androgen receptor deficiency. Adapt Med. 2018;10:143–54.

    Article  CAS  Google Scholar 

  56. Scotti C, Piccinini E, Takizawa H, Todorov A, Bourgine P, Papadimitropoulos A, Barbero A, Manz MG, Martin I. Engineering of a functional bone organ through endochondral ossification. PNAS. 2013;110(10):3997–4002.

    Article  CAS  Google Scholar 

  57. Li C, Li G, Liu M, Zhou T, Zhou H. Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function. J Biosc Bioengin. 2016;121(2):213–9.

    Article  CAS  Google Scholar 

  58. Watt FM, Hogan BL. Out of Eden: stem cell and their niches. Science. 2000;287:1427–30.

    Article  CAS  Google Scholar 

  59. Voog J, Jones DL. Stem cell and the niche: a dynamic duo. Cell Stem Cell. 2010;6:103–15.

    Article  CAS  Google Scholar 

  60. Ter Huurne M, Schelbergen R, Blattes R, Blom A, de Munter W, Grevers LC, Jeanson J, Noël D, Casteilla L, Jorgensen C, van den Berg W, van Lent LEM. Atiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 2012;64:3604–13.

    Article  Google Scholar 

  61. Mancuso P, Raman S, Glynn A, Barry F, Murphy JM. Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome. Frontier Bioeng Biotechnol. 2018;7:9.

    Article  Google Scholar 

  62. Cotler HB, Chow RT, Hamblin MR, Carroll J. The use of low-level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthoped Reumatol. 2015;2(5):1–16.

    Google Scholar 

  63. Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22:348–64.

    Article  Google Scholar 

  64. Mosca RC, Ong AA, Albasha O, Bass K, Arany P. Photobiomodulation therapy for wound care: a potent noninvasive, photoceutical approach. Adv Skin Wound Care. 2019;32:157–67.

    Article  Google Scholar 

  65. Tripodi N, Feehan J, Husaric M, Kiatos D, Sidriglou F, Fraser S, Apostolopoulos V. Good, better, best? The effect of polarization on photobiomodulation therapy. J Biphotonics. 2020;13(5):e201960230.

    Article  Google Scholar 

  66. Tripodi N, Corcoran D, Antonello P, Balic N, Caddy D, Knight A, Meehan C, Sidriglou F, Fraser S, Kiatos D, Husaric M, Apostolopoulos V, Feehan J. The effects of photobiomodulation on human dermal fibroblasts in vitro: a systematic review. J Photochem Photobiol B Biol. 2021;214:112100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Renata Aquino de Carvalho for technical support.

Funding

This work was supported by São Paulo Research Foundation (FAPESP), SP, Brazil (Grant # 2016/02811–4).

Author information

Authors and Affiliations

Authors

Contributions

Eduardo Donato Alves: methodology, investigation, writing—review and editing. Luíz Guilherme Dércore Benevenuto: methodology, investigation. Bruna Pereira de Morais: methodology, writing—review and editing. Michele Andrade de Barros: methodology. Jorge Alberto Achcar: formal analysis, writing—review and editing. Luís Henrique Montrezor: conceptualization, methodology, investigation, writing—original draft, writing—review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to L. H. Montrezor.

Ethics declarations

Ethics Approval

All the animal experimental procedures were conducted in compliance with the guidelines of the National Council of Control in Animal Experimentation (CONCEA-MCTI, Brazil) and were approved by the local Animal Care and Use Committee (CEUA-UNIARA, nº 030/2016).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, E.D., Benevenuto, L.G.D., Morais, B.P. et al. Ovarian Microenvironment Modulation by Adipose-Mesenchymal Stem Cells and Photobiomodulation Can Alter Osteoblasts Functions In Vitro. Regen. Eng. Transl. Med. 9, 506–517 (2023). https://doi.org/10.1007/s40883-023-00297-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-023-00297-y

Keywords

Navigation