Skip to main content

Advertisement

Log in

Extracellular Vesicles: a Trojan Horse Delivery Method for Systemic Administration of Oncolytic Viruses

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

Oncolytic viruses (OVs) exert a high level of antitumor potency without causing harm to normal cells. Current oncolytic virotherapy is mainly limited to the intratumoral injection of viral particles, while systemic administration provides the opportunity to treat metastatic neoplasia as well as the primary tumor. Despite promising outcomes in preclinical studies, systemic administration of oncolytic viruses has shown little success in patients. Extracellular vesicles (EVs) are secreted by most mammalian cell types, both in pathologic and physiologic conditions and exert a wide range of biological functions in intercellular communication. Extracellular vesicles are also involved in viral infection, and it has been shown that viruses affect the generation and content of these particles. This review aimed to summarize the current knowledge of EV involvement in viral infection and discuss their potential as vehicles for systemic delivery of OVs.

Methods

The relationships between oncolytic viruses and EVs were studied by searching specific phrases like “systemic delivery of oncolytic viruses by extracellular vesicles” PubMed and Google Scholar databases.

Results

Numerous articles have suggested the role of extracellular vesicles in the spread of viruses, and several evidence demonstrated that these particles efficiently deliver the oncolytic viruses to the target sites through systemic infusion.

Conclusion

Due to the role of extracellular vesicles in the spread of viruses, they can be used as a tool for systemic delivery of oncolytic viruses.

Lay Summary

It has been established that oncolytic viruses (OVs) have a high level of antitumor potency without causing harm to normal cells. Despite promising outcomes in preclinical studies, systemic administration of OV has exert little success in patients due to the rapid clearance of the viruses, as a result of host immune response. It has been established that EVs are involved in viral infection, and it has been shown that viruses affect the generation and content of EVs. This review will summarize the current knowledge of EV involvement in viral infection and discuss their potential as vehicles for systemic delivery of OVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability 

Not applicable.

Abbreviations

EVs:

Extracellular vesicles

OVs:

Oncolytic viruses

IV:

Intervascular

IT:

Intratumoral

EBV:

Epstein–Barr virus

NDV:

Newcastle disease virus

References

  1. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther [Internet]. 2007 Apr;15(4):651–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001616313314.

  2. Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccines Immunother [Internet]. 2018;14(4):839–46. https://doi.org/10.1080/21645515.2017.1412896.

    Article  Google Scholar 

  3. Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. JNCI J Natl Cancer Inst [Internet]. 2006 Mar 1;98(5):298–300. Available from: http://academic.oup.com/jnci/article/98/5/298/2522047/China-Approves-Worlds-First-Oncolytic-Virus.

  4. Evgin L, Acuna SA, Tanese de Souza C, Marguerie M, Lemay CG, Ilkow CS, et al. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques. Mol Ther [Internet]. 2015 Jun;23(6):1066–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001616301344.

  5. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia [Internet]. 2006 Sep 20;20(9):1487–95. Available from: http://www.nature.com/articles/2404296.

  6. Beaudoin AR, Grondin G. Shedding of vesicular material from the cell surface of eukaryotic cells: different cellular phenomena. Biochim Biophys Acta - Rev Biomembr [Internet]. 1991 Nov;1071(3):203–19. Available from: https://linkinghub.elsevier.com/retrieve/pii/030441579190014N.

  7. Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev [Internet]. 2013;27(1):31–9. https://doi.org/10.1016/j.blre.2012.12.002.

    Article  CAS  Google Scholar 

  8. Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience [Internet]. 2015 Aug 1;65(8):783–97. Available from: http://academic.oup.com/bioscience/article/65/8/783/240409/Extracellular-Vesicles-Composition-Biological.

  9. Altan-Bonnet N. Extracellular vesicles are the Trojan horses of viral infection. Curr Opin Microbiol [Internet]. 2016;32:77–81. https://doi.org/10.1016/j.mib.2016.05.004.

    Article  CAS  Google Scholar 

  10. Anderson MR, Kashanchi F, Jacobson S. Exosomes in viral disease. Neurother. 2016;13(3):535–46. https://doi.org/10.1007/s13311-016-0450-6.

    Article  CAS  Google Scholar 

  11. Kouwaki T, Okamoto M, Tsukamoto H, Fukushima Y, Oshiumi H. Extracellular Vesicles Deliver Host and Virus RNA and Regulate Innate Immune Response. Int J Mol Sci. 2017;18(3):666. https://doi.org/10.3390/ijms18030666.

  12. Liu L, Zhou Q, Xie Y, Zuo L, Zhu F, Lu J. Extracellular vesicles: novel vehicles in herpesvirus infection. Virol Sin. 2017;32(5):349–56. https://doi.org/10.1007/s12250-017-4073-9.

    Article  CAS  Google Scholar 

  13. Sin J, McIntyre L, Stotland A, Feuer R, Gottlieb RA. Coxsackievirus B escapes the infected cell in ejected mitophagosomes. J Virol [Internet]. 2017;91(24):1–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28978702.

  14. Mao L, Wu J, Shen L, Yang J, Chen J, Xu H. Enterovirus 71 transmission by exosomes establishes a productive infection in human neuroblastoma cells. Virus Genes. 2016;52(2):189–94.

    Article  CAS  Google Scholar 

  15. Murphy DE, Jong OG De, Brouwer M, Wood MJ, Lavieu G, Schiffelers RM, et al. Extracellular vesicle-based therapeutics : natural versus engineered targeting and trafficking. Exp Mol Med [Internet]. 2019; https://doi.org/10.1038/s12276-019-0223-5.

  16. Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, et al. Recent advancements in the use of exosomes as drug delivery systems 06 Biological Sciences 0601 Biochemistry and Cell Biology. J Nanobiotechnol. 2018;16(1):1–13. https://doi.org/10.1186/s12951-018-0403-9.

    Article  CAS  Google Scholar 

  17. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep. 2015;16(1):24–43. https://doi.org/10.15252/embr.201439363.

    Article  CAS  Google Scholar 

  18. Shen J, Huang C-K, Yu H, Shen B, Zhang Y, Liang Y, et al. The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma. J Cell Mol Med. 2017;21(5):986–92. https://doi.org/10.1111/jcmm.12950.

    Article  Google Scholar 

  19. Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel). 2021;13(21):5452. https://doi.org/10.3390/cancers13215452.

  20. Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001;19(2):289–98. https://doi.org/10.1200/JCO.2001.19.2.289.

    Article  CAS  Google Scholar 

  21. Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J, et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus ( dl 1520 ): phase II viral, immunologic, and clinical endpoints. 2002;(33):6070–9.

  22. Lu W, Zheng S, Li X, Huang J, Zheng X, Li Z. Intra-tumor injection of H101 , a recombinant adenovirus , in combination with chemotherapy in patients with advanced cancers : a pilot phase II clinical trial. 2004;10(24):3634–8.

  23. Small EJ, Carducci MA, Burke JM, Rodriguez R, Fong L, Ummersen L Van, et al. A phase I trial of intravenous CG7870, antigen – targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. 2006;14(1):107–17.

  24. Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke AP, Bedell C, et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus ( Telomelysin ) for various solid tumors. Mol Ther. 2010;18(2):429–34. https://doi.org/10.1038/mt.2009.262.

    Article  CAS  Google Scholar 

  25. Kaufman HL, Amatruda T, Reid T, Gonzalez R, Glaspy J, Whitman E, et al. Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J Immunother Cancer [Internet]. 2016;1–8 https://doi.org/10.1186/s40425-016-0116-2.

  26. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol. 2015;33(25):2780–8. https://doi.org/10.1200/JCO.2014.58.3377.

  27. Kemeny N, Brown K, Covey A, Kim T, Bhargava A, Brody L, et al. Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. Hum Gene Ther. 2006;1224(December):1214–24.

    Article  Google Scholar 

  28. Geevarghese SK, Geller DA, de Haan HA, Hörer M, Knoll AE, Mescheder A, et al. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther. 2010;21(9):1119–28. https://doi.org/10.1089/hum.2010.020.

    Article  CAS  Google Scholar 

  29. Hirooka Y, Kasuya H, Ishikawa T, Kawashima H, Ohno E, Villalobos IB, et al. A phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer. BMC Cancer. 2018;18(1):596. https://doi.org/10.1186/s12885-018-4453-z.

    Article  CAS  Google Scholar 

  30. Freeman AI, Zakay-Rones Z, Gomori JM, Linetsky E, Rasooly L, Greenbaum E, et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol Ther. 2006;13(1):221–8. https://doi.org/10.1016/j.ymthe.2005.08.016.

    Article  CAS  Google Scholar 

  31. Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol. 2002;20(9):2251–66. https://doi.org/10.1200/JCO.2002.08.042.

    Article  CAS  Google Scholar 

  32. Laurie SA. A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clin Cancer Res. 2006;12(8):2555–62. https://doi.org/10.1158/1078-0432.CCR-05-2038.

    Article  CAS  Google Scholar 

  33. Vidal L, Pandha HS, Yap TA, White CL, Twigger K, Vile RG, et al. A phase I study of intravenous oncolytic reovirus type 3 dearing in patients with advanced cancer. Clin Cancer Res. 2008;14(21):7127–37. https://doi.org/10.1158/1078-0432.CCR-08-0524.

    Article  CAS  Google Scholar 

  34. Harrington KJ, Karapanagiotou EM, Roulstone V, Twigger KR, White CL, Vidal L, et al. Two-stage phase i dose-escalation study of intratumoral reovirus type 3 dearing and palliative radiotherapy in patients with advanced cancers. Clin Cancer Res. 2010;16(11):3067–77. https://doi.org/10.1158/1078-0432.CCR-10-0054.

    Article  CAS  Google Scholar 

  35. Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329–36. https://doi.org/10.1038/nm.3089.

    Article  CAS  Google Scholar 

  36. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010;70(3):875–82. https://doi.org/10.1158/0008-5472.CAN-09-2762.

    Article  CAS  Google Scholar 

  37. Geletneky K, Hajda J, Angelova AL, Leuchs B, Capper D, Bartsch AJ, et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol Ther. 2017;25(12):2620–34. https://doi.org/10.1016/j.ymthe.2017.08.016.

    Article  CAS  Google Scholar 

  38. Ferguson MS, Lemoine NR, Wang Y. Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol [Internet]. 2012;2012:1–14. Available from: http://www.hindawi.com/journals/av/2012/805629/.

  39. Hill C, Carlisle R. Achieving systemic delivery of oncolytic viruses. Expert Opin Drug Deliv. 2019;16(6):607–20. https://doi.org/10.1080/17425247.2019.1617269.

    Article  Google Scholar 

  40. Bourgeois-Daigneault M-C, Roy DG, Aitken AS, El Sayes N, Martin NT, Varette O, et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci Transl Med. 2018;10(422):eaao1641. https://doi.org/10.1126/scitranslmed.aao1641.

    Article  CAS  Google Scholar 

  41. Seymour LW, Fisher KD. Oncolytic viruses: finally delivering. Br J Cancer. 2016;114(4):357–61. https://doi.org/10.1038/bjc.2015.481.

    Article  CAS  Google Scholar 

  42. Wong HH, Lemoine N, Wang Y. Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses [Internet]. 2010 Jan 11;2(1):78–106. Available from: http://www.mdpi.com/1999-4915/2/1/78.

  43. Keller S, Ridinger J, Rupp A-K, Janssen JWG, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9(1):86. https://doi.org/10.1186/1479-5876-9-86.

    Article  CAS  Google Scholar 

  44. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  Google Scholar 

  45. Latifkar A, Hur YH, Sanchez JC, Cerione RA, Antonyak MA. New insights into extracellular vesicle biogenesis and function. J Cell Sci. 2019;132(13):jcs.222406. https://doi.org/10.1242/jcs.222406.

    Article  CAS  Google Scholar 

  46. Yáñez-Mó M, Siljander PRM, Andreu Z, BedinaZavec A, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(1):27066. https://doi.org/10.3402/jev.v4.27066.

    Article  Google Scholar 

  47. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124(25):3748–57. https://doi.org/10.1182/blood-2014-05-576116.

    Article  CAS  Google Scholar 

  48. van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol Mol Biol Rev. 2016;80(2):369–86. https://doi.org/10.1128/MMBR.00063-15.

    Article  Google Scholar 

  49. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220:727–37. https://doi.org/10.1016/j.jconrel.2015.09.031.

    Article  CAS  Google Scholar 

  50. Raab-Traub N, Dittmer DP. Viral effects on the content and function of extracellular vesicles. Nat Rev Microbiol [Internet]. 2017 Sep 26;15(9):559–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0031938416312148.

  51. Alenquer M, Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses [Internet]. 2015 Sep 17;7(9):5066–83. Available from: http://www.mdpi.com/1999-4915/7/9/2862.

  52. Bello-Morales R, López-Guerrero JA. Extracellular vesicles in herpes viral spread and immune evasion. Front Microbiol. 2018;9(OCT):1–9. https://doi.org/10.3389/fmicb.2018.02572/full.

    Article  Google Scholar 

  53. Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature. 2013;496(7445):367–71. https://doi.org/10.1038/nature12029.

    Article  CAS  Google Scholar 

  54. Hirai-Yuki A, Hensley L, Whitmire JK, Lemon SM. Biliary secretion of quasi-enveloped human hepatitis A virus. MBio. 2016;7(6):1–11. https://doi.org/10.1128/mBio.01998-16.

    Article  Google Scholar 

  55. Chen Y-H, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell [Internet]. 2015 Feb 1;160(4):619–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0031938416312148.

  56. Inal JM, Jorfi S. Coxsackievirus B transmission and possible new roles for extracellular vesicles. Biochem Soc Trans [Internet]. 2013 Feb 1;41(1):299–302. Available from: https://portlandpress.com/biochemsoctrans/article/41/1/299/68031/Coxsackievirus-B-transmission-and-possible-new.

  57. Robinson SM, Tsueng G, Sin J, Mangale V, Rahawi S, McIntyre LL, et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. Pierson TC. editor. PLoS Pathog. 2014;10(4):1004045. https://doi.org/10.1371/journal.ppat.1004045.

    Article  CAS  Google Scholar 

  58. Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci. 2013;110(32):13109–13. https://doi.org/10.1073/pnas.1221899110.

    Article  Google Scholar 

  59. Brimacombe CL, Grove J, Meredith LW, Hu K, Syder AJ, Flores MV, et al. Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol. 2011;85(1):596–605. https://doi.org/10.1128/JVI.01592-10.

    Article  CAS  Google Scholar 

  60. Dreux M, Garaigorta U, Boyd B, Décembre E, Chung J, Whitten-Bauer C, et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe [Internet]. 2012 Oct 18;12(4):558–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X15370834.

  61. Zhang J, Randall G, Higginbottom A, Monk P, Rice CM, McKeating JA. CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol. 2004;78(3):1448–55. https://doi.org/10.1128/JVI.78.3.1448-1455.2004.

    Article  CAS  Google Scholar 

  62. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med [Internet]. 2006 Dec 19;12(12):1365–71. Available from: http://www.nature.com/articles/nm1511.

  63. Nguyen DG, Booth A, Gould SJ, Hildreth JEK. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem. 2003;278(52):52347–54. https://doi.org/10.1074/jbc.M309009200.

    Article  CAS  Google Scholar 

  64. Lenassi M, Cagney G, Liao M, Vaupotič T, Bartholomeeusen K, Cheng Y, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic [Internet]. 2010 Jan;11(1):110–22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.

  65. Raymond AD, Campbell-Sims TC, Khan M, Lang M, Huang MB, Bond VC, et al. HIV Type 1 Nef is released from infected cells in CD45 + microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res Hum Retroviruses. 2011;27(2):167–78. https://doi.org/10.1089/aid.2009.0170.

    Article  CAS  Google Scholar 

  66. Pereira EA, DaSilva LLP. HIV-1 Nef: taking control of protein trafficking. Traffic. 2016;17(9):976–96. https://doi.org/10.1111/tra.12412.

    Article  CAS  Google Scholar 

  67. Aqil M, Naqvi AR, Mallik S, Bandyopadhyay S, Maulik U, Jameel S. The HIV Nef protein modulates cellular and exosomal miRNA profiles in human monocytic cells. J Extracell Vesicles. 2014;3(1):23129. https://doi.org/10.3402/jev.v3.23129.

    Article  Google Scholar 

  68. Sadeghipour S, Mathias RA. Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol. 2017;67:91–100. https://doi.org/10.1016/j.semcdb.2017.03.005.

    Article  CAS  Google Scholar 

  69. Flanagan J. Localization of the Epstein-Barr virus protein LMP 1 to exosomes. J Gen Virol. 2003;84(7):1871–9. https://doi.org/10.1099/vir.0.18944-0.

    Article  CAS  Google Scholar 

  70. Meckes DG, Shair KHY, Marquitz AR, Kung C-P, Edwards RH, Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci. 2010;107(47):20370–5. https://doi.org/10.1073/pnas.1014194107.

    Article  Google Scholar 

  71. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MAJ, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci. 2010;107(14):6328–33. https://doi.org/10.1073/pnas.0914843107.

    Article  Google Scholar 

  72. Chugh P, Tamburro K, Dittmer DP. Profiling of pre-micro RNAs and microRNAs using quantitative real-time PCR (qPCR) arrays. J Vis Exp [Internet]. 2010 Dec 3;(46):1–5. Available from: http://www.jove.com/index/Details.stp?ID=2210.

  73. Chugh PE, Sin S-H, Ozgur S, Henry DH, Menezes P, Griffith J, et al. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies. Gao S-J, editor. PLoS Pathog [Internet]. 2013 Jul 18;9(7):e1003484. Available from: http://dx.plos.org/https://doi.org/10.1371/journal.ppat.1003484.

  74. Temme S, Eis-Hübinger AM, McLellan AD, Koch N. The herpes simplex virus-1 encoded glycoprotein B diverts HLA-DR into the exosome pathway. J Immunol. 2010;184(1):236–43. https://doi.org/10.4049/jimmunol.0902192.

    Article  CAS  Google Scholar 

  75. Hogue IB, Scherer J, Enquist LW. Exocytosis of alphaherpesvirus virions, light particles, and glycoproteins uses constitutive secretory mechanisms. MBio. 2016;7(3):1–8. https://doi.org/10.1128/mBio.00820-16.

    Article  Google Scholar 

  76. Yokoda R, Nagalo B, Vernon B, Oklu R, Albadawi H, DeLeon T, et al. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virotherapy [Internet]. 2017 Nov;Volume 6:39–49. Available from: https://www.dovepress.com/oncolytic-virus-delivery-from-nano-pharmacodynamics-to-enhanced-oncoly-peer-reviewed-article-OV.

  77. Kim J, Kim P-H, Kim SW, Yun C-O. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials [Internet]. 2012 Feb;33(6):1838–50. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.

  78. Duncan R, Vicent MJ. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities☆. Adv Drug Deliv Rev. 2010;62(2):272–82. https://doi.org/10.1016/j.addr.2009.12.005.

    Article  CAS  Google Scholar 

  79. Yamamoto M, Curiel DT. Current issues and future directions of oncolytic adenoviruses. Mol Ther. 2010;18(2):243–50. https://doi.org/10.1038/mt.2009.266.

    Article  CAS  Google Scholar 

  80. Danielsson A, Elgue G, Nilsson BM, Nilsson B, Lambris JD, Tötterman TH, et al. An ex vivo loop system models the toxicity and efficacy of PEGylated and unmodified adenovirus serotype 5 in whole human blood. Gene Ther [Internet]. 2010 Jun 11;17(6):752–62. Available from: http://www.nature.com/articles/gt201018.

  81. Sun X, Han, Zhao, Gong T, Zhirongzhang, Sun X. Protection of adenovirus from neutralizing antibody by cationic PEG derivative ionically linked to adenovirus. Int J Nanomedicine [Internet]. 2012 Feb;7:985. Available from: http://www.dovepress.com/protection-of-adenovirus-from-neutralizing-antibody-by-cationic-peg-de-peer-reviewed-article-IJN.

  82. Mendez N, Herrera V, Zhang L, Hedjran F, Feuer R, Blair SL, et al. Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials [Internet]. 2014 Nov;35(35):9554–61. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.

  83. Chen S-H, Pan P-Y, Eisenstein S. Immune cells: more than simple carriers for systemic delivery of oncolytic viruses. Oncolytic Virotherapy [Internet]. 2014 Nov;83. Available from: http://www.dovepress.com/immune-cells-more-than-simple-carriers-for-systemic-delivery-of-oncoly-peer-reviewed-article-OV.

  84. Katakowski M, Chopp M. Exosomes as tools to suppress primary brain tumor. Cell Mol Neurobiol. 2016;36(3):343–52. https://doi.org/10.1007/s10571-015-0280-9.

    Article  CAS  Google Scholar 

  85. Srivastava A, Babu A, Filant J, Moxley K, Ruskin R, Dhanasekaran D, et al. Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J Biomed Nanotechnol. 2016;12(6):1159–73. https://doi.org/10.1166/jbn.2016.2205.

    Article  CAS  Google Scholar 

  86. Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, et al. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget [Internet]. 2016 Jun 21;7(25):38927–45. Available from: http://www.oncotarget.com/fulltext/7792.

  87. Ran L, Tan X, Li Y, Zhang H, Ma R, Ji T, et al. Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomater. 2016;89:56–66. https://doi.org/10.1016/j.biomaterials.2016.02.025.

    Article  CAS  Google Scholar 

  88. Garofalo M, Saari H, Somersalo P, Crescenti D, Kuryk L, Aksela L, et al. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J Control Release. 2018;283(June):223–34. https://doi.org/10.1016/j.jconrel.2018.05.015.

    Article  CAS  Google Scholar 

  89. Garofalo M, Villa A, Rizzi N, Kuryk L, Mazzaferro V, Ciana P. Systemic administration and targeted delivery of immunogenic oncolytic adenovirus encapsulated in extracellular vesicles for cancer therapies. Viruses [Internet]. 2018 Oct 13;10(10):558. Available from: http://www.mdpi.com/1999-4915/10/10/558.

  90. Hemminki O, dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020;13(1):84. https://doi.org/10.1186/s13045-020-00922-1.

    Article  Google Scholar 

  91. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles — endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta - Rev Cancer. 2014;1846(1):75–87. https://doi.org/10.1016/j.bbcan.2014.04.005.

    Article  CAS  Google Scholar 

  92. Vallhov H, Gutzeit C, Johansson SM, Nagy N, Paul M, Li Q, et al. Exosomes containing glycoprotein 350 released by EBV-transformed B cells selectively target B cells through CD21 and block EBV infection in vitro. J Immunol. 2011;186(1):73–82. https://doi.org/10.4049/jimmunol.1001145.

    Article  CAS  Google Scholar 

  93. Ruiss R, Jochum S, Mocikat R, Hammerschmidt W, Zeidler R. EBV-gp350 confers B-cell tropism to tailored exosomes and is a neo-antigen in normal and malignant B Cells—a new option for the treatment of B-CLL. Multhoff G, editor. PLoS One. 2011;6(10):e25294. https://doi.org/10.1371/journal.pone.0025294.

    Article  CAS  Google Scholar 

  94. Nolte-‘t Hoen E, Cremer T. Gallo RC Margolis LB. Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci. 2016;113(33):9155–61. https://doi.org/10.1073/pnas.1605146113.

    Article  CAS  Google Scholar 

  95. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci. 2012;109(31):2110–6. https://doi.org/10.1073/pnas.1209414109.

    Article  Google Scholar 

  96. Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H, et al. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity. Nat Immunol. 2013;14(8):793–803. https://doi.org/10.1038/ni.2647.

    Article  CAS  Google Scholar 

  97. Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics [Internet]. 2019;9(26):8001–17. Available from: http://www.thno.org/v09p8001.htm.

  98. Konoshenko MY, Lekchnov EA, Vlassov A V, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int [Internet]. 2018;2018:1–27. Available from: https://www.hindawi.com/journals/bmri/2018/8545347/.

Download references

Acknowledgements

The authors would like to thank the Department of Tissue Engineering and Applied Cell Sciences, Shiraz University of Medical Sciences, for planning this project.

Author information

Authors and Affiliations

Authors

Contributions

BT suggested and described the idea. BT, ZZ-B, and AB wrote the different parts of the manuscript. ZZ-B drew the pictures, and F M.M edited the manuscript.

Corresponding authors

Correspondence to Behnaz Taheri or Zeinab Zarei-Behjani.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, B., Zarei-Behjani, Z., Babaei, A. et al. Extracellular Vesicles: a Trojan Horse Delivery Method for Systemic Administration of Oncolytic Viruses. Regen. Eng. Transl. Med. 9, 447–457 (2023). https://doi.org/10.1007/s40883-023-00295-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-023-00295-0

Keywords

Navigation