Skip to main content

Advertisement

Log in

Cell-Based and Gene-Based Therapy Approaches in Neuro-orthopedic Disorders: a Literature Review

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

Neuro-orthopedic disorders are a broad spectrum of disorders which affects muscular function and this field is a challenging field in medicine. Tissue engineering (TE) is an emerging field of medicine. In recent years, advances have been made in the use of tissue engineering to treat neuro-orthopedic disorders. Progress in tissue engineering methods for treating neuro-orthopedic disorders needs a multi-disciplinary collaboration between clinicians and basic science researchers.

Methods

This review is a comprehensive review which addresses clinicians about progresses in tissue engineering methods for treating neuro-orthopedic disorders including muscular dystrophies, myelomeningocele, and cerebral palsy.

Result

Studies are promising in tissue engineering as a treatment for neuro-orthopedic disorders. However, more experiments are needed to improve the current methods.

Conclusion

Although much progress has been made in the field of tissue engineering and gene therapy in treatment of some neuromuscular disorders, developing better animal models, finding the best cell for tissue engineering, and advancing of new methods in gene therapy will help us to progress more and more to reach the final and definite treatment.

Summary

Neuro-orthopedic disorders are a broad spectrum of disorders which affects muscular function and this field is a challenging field in medicine. Tissue engineering (TE), as an important part of tissue regeneration strategies, is being widely used in medicine and treatment in recent years. Although much progress has been made in the field of tissue engineering and gene therapy in treatment of some neuromuscular disorders, we are still at the beginning and there is a long way to go. The more we know about the mechanism and pathophysiology of a disease, the more chance we have to reach a better result. Developing better animal models, finding the best cell for tissue engineering, and advancing of new methods in gene therapy will help us to progress more and more to reach the final and definite treatment.

Lay Summary

Cerebral palsy, myelomeningocele, and muscular dystrophies are disorders that affect the muscles and nerves. They start in childhood and impair the movement and development of the patients for the rest of their lives. Some of these disorders, such as Duchenne muscular dystrophy, significantly shorten the life span. These disorders do not have any effective treatment yet. Stem cell therapy and gene therapy are new ways of treatment that can introduce healthy cells or genes to the patient body to heal the injury. In this study, we will discuss the use, safety, and effectiveness of these methods in the disorders mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tissue Engineering. 2022. [Available from: https://www.ncbi.nlm.nih.gov/mesh/?term=tissue+engineering. Accessed 1 Oct. 2022

  2. Corona BT, Ward CL, Harrison BS, Christ GJ. Regenerative medicine: basic concepts, current status, and future applications. J Investig Med. 2010;58(7):849–58. .

  3. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403–30.

    Article  Google Scholar 

  4. Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–61.

    Article  Google Scholar 

  5. Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251–67.

    Article  Google Scholar 

  6. Mendell JR, Lloyd-Puryear M. Report of MDA muscle disease symposium on newborn screening for Duchenne muscular dystrophy. Muscle Nerve. 2013;48(1):21–6.

    Article  Google Scholar 

  7. Arora H. Duchenne muscular dystrophy: still an incurable disease. Neurol India. 2019;67(3):717–23.

    Google Scholar 

  8. McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech. 2015;8(3):195–213.

    Article  CAS  Google Scholar 

  9. Blat Y, Blat S. Drug discovery of therapies for duchenne muscular dystrophy. J Biomol Screen. 2015;20(10):1189–203.

    Article  CAS  Google Scholar 

  10. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science (New York, NY). 1989;244(4912):1578–80.

    Article  CAS  Google Scholar 

  11. Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA. Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J: Off Publ Fed Am Soc Exp Biol. 2007;21(9):2195–204.

    Article  CAS  Google Scholar 

  12. Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell. 1997;90(4):717–27.

    Article  CAS  Google Scholar 

  13. Kinoshita I, Vilquin JT, GuéRette B, Asselin I, Roy R, Tremblay JP. Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle Nerve: Off J Am Assoc Electrodiagnostic Med. 1994;17(12):1407–15.

    Article  CAS  Google Scholar 

  14. Partridge TA, Morgan J, Coulton G, Hoffman E, Kunkel L. Conversion of mdx myofibres from dystrophin-negative to-positive by injection of normal myoblasts. Nature. 1989;337(6203):176–9.

    Article  CAS  Google Scholar 

  15. Gussoni E, Pavlath GK, Lanctot AM, Sharma KR, Miller RG, Steinman L, et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature. 1992;356(6368):435–8.

    Article  CAS  Google Scholar 

  16. Chang NC, Chevalier FP, Rudnicki MA. Satellite cells in muscular dystrophy - lost in polarity. Trends Mol Med. 2016;22(6):479–96.

    Article  CAS  Google Scholar 

  17. Stuelsatz P, Shearer A, Li Y, Muir LA, Ieronimakis N, Shen QW, et al. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency. Dev Biol. 2015;397(1):31–44.

    Article  CAS  Google Scholar 

  18. Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006;444(7119):574–9.

    Article  CAS  Google Scholar 

  19. Berry SE, Liu J, Chaney EJ, Kaufman SJ. Multipotential mesoangioblast stem cell therapy in the mdx/utrn-/- mouse model for Duchenne muscular dystrophy. Regen Med. 2007;2(3):275–88.

    Article  CAS  Google Scholar 

  20. Chun JL, O’Brien R, Song MH, Wondrasch BF, Berry SE. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl Med. 2013;2(1):68–80.

    Article  CAS  Google Scholar 

  21. Pluripotent Stem Cells. 2022. [Available from: https://www.ncbi.nlm.nih.gov/mesh/68039904. Accessed 1 Oct. 2022

  22. He R, Li H, Wang L, Li Y, Zhang Y, Chen M, et al. Engraftment of human induced pluripotent stem cell-derived myogenic progenitors restores dystrophin in mice with duchenne muscular dystrophy. Biol Res. 2020;53(1):22.

    Article  Google Scholar 

  23. Siemionow M, Cwykiel J, Heydemann A, Garcia J, Marchese E, Siemionow K, et al. Dystrophin expressing chimeric (DEC) human cells provide a potential therapy for duchenne muscular dystrophy. Stem Cell Rev Rep. 2018;14(3):370–84.

    Article  CAS  Google Scholar 

  24. Karpati G, Ajdukovic D, Arnold D, Gledhill RB, Guttmann R, Holland P, et al. Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc. 1993;34(1):8–17.

    Article  CAS  Google Scholar 

  25. Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med. 1995;333(13):832–8.

    Article  CAS  Google Scholar 

  26. Tremblay JP, Malouin F, Roy R, Huard J, Bouchard J, Satoh A, et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 1993;2(2):99–112.

    Article  CAS  Google Scholar 

  27. Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, et al. Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med. 2015;7(12):1513–28.

    Article  CAS  Google Scholar 

  28. Takeshima Y, Yagi M, Okizuka Y, Awano H, Zhang Z, Yamauchi Y, et al. Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J Hum Genet. 2010;55(6):379–88.

    Article  CAS  Google Scholar 

  29. Ferlini A, Sabatelli P, Fabris M, Bassi E, Falzarano S, Vattemi G, et al. Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP–AON complexes. Gene Ther. 2010;17(3):432–8.

    Article  CAS  Google Scholar 

  30. Tanganyika-de Winter CL, Heemskerk H, Karnaoukh TG, Van Putten M, De Kimpe SJ, Van Deutekom J, et al. Long-term exon skipping studies with 2′-O-methyl phosphorothioate antisense oligonucleotides in dystrophic mouse models. Mol Ther-Nucleic Acids. 2012;1:e44.

    Article  Google Scholar 

  31. Echigoya Y, Nakamura A, Nagata T, Urasawa N, Lim KRQ, Trieu N, et al. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci. 2017;114(16):4213–8.

    Article  CAS  Google Scholar 

  32. Kuijper EC, Bergsma AJ, Pijnappel WWMP, Aartsma-Rus A. Opportunities and challenges for antisense oligonucleotide therapies. J Inherit Metab Dis. 2021;44(1):72–87.

    Article  CAS  Google Scholar 

  33. Bostick B, Shin J-H, Yue Y, Duan D. AAV-microdystrophin therapy improves cardiac performance in aged female mdx mice. Mol Ther. 2011;19(10):1826–32.

    Article  CAS  Google Scholar 

  34. Duan D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther. 2018;26(10):2337–56.

    Article  CAS  Google Scholar 

  35. Kodippili K, Hakim CH, Pan X, Yang HT, Yue Y, Zhang Y, et al. Dual AAV gene therapy for Duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model. Hum Gene Ther. 2018;29(3):299–311.

    Article  CAS  Google Scholar 

  36. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther: J Am Soc Gene Ther. 2012;20(2):443–55.

    Article  CAS  Google Scholar 

  37. Roshmi RR, Yokota T. Viltolarsen for the treatment of Duchenne muscular dystrophy. Drugs Today (Barc). 2019;55(10):627–39.

    Article  CAS  Google Scholar 

  38. Narayanaswami P, Weiss M, Selcen D, David W, Raynor E, Carter G, et al. Evidence-based guideline summary: diagnosis and treatment of limb-girdle and distal dystrophies: report of the guideline development subcommittee of the American Academy of Neurology and the practice issues review panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology. 2014;83(16):1453–63.

    Article  Google Scholar 

  39. Kirschner J, Lochmüller H. Sarcoglycanopathies. Handb Clin Neurol. 2011;101:41–6. https://doi.org/10.1016/B978-0-08-045031-5.00003-7.

  40. Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol: Myopathies Cardiomyopathies: Off J Mediterr Soc Myology. 2014;33(1):1–12.

    CAS  Google Scholar 

  41. Darras BT. limb-girlde musclar dystrophy. In: Dashe JF, editor. UpToDate. Waltham, 2022. Available at: https://www.uptodate.com/contents/limb-girdle-muscular-dystrophy. Accessed 1 Oct. 2022

  42. Durbeej M, Cohn RD, Hrstka RF, Moore SA, Allamand V, Davidson BL, et al. Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. Mol Cell. 2000;5(1):141–51.

    Article  CAS  Google Scholar 

  43. Hack AA, Ly CT, Jiang F, Clendenin CJ, Sigrist KS, Wollmann RL, et al. Gamma-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J Cell Biol. 1998;142(5):1279–87.

    Article  CAS  Google Scholar 

  44. Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH, et al. Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol. 1998;142(6):1461–71.

    Article  CAS  Google Scholar 

  45. Sandonà D, Betto R. Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Rev Mol Med. 2009;11:e28.

    Article  Google Scholar 

  46. Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med. 2012;4:140ra89-ra89.

    Article  Google Scholar 

  47. Pozsgai ER, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. Systemic AAV-mediated & #x3b2;-sarcoglycan delivery targeting cardiac and skeletal muscle ameliorates histological and functional deficits in LGMD2E mice. Mol Ther. 2017;25(4):855–69.

    Article  CAS  Google Scholar 

  48. Li J, Wang D, Qian S, Chen Z, Zhu T, Xiao X. Efficient and long-term intracardiac gene transfer in δ-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors. Gene Ther. 2003;10(21):1807–13.

    Article  CAS  Google Scholar 

  49. Dressman D, Araishi K, Imamura M, Sasaoka T, Liu LA, Engvall E, et al. Delivery of alpha- and beta-sarcoglycan by recombinant adeno-associated virus: efficient rescue of muscle, but differential toxicity. Hum Gene Ther. 2002;13(13):1631–46.

    Article  CAS  Google Scholar 

  50. Rodino-Klapac LR, Lee JS, Mulligan RC, Clark KR, Mendell JR. Lack of toxicity of alpha-sarcoglycan overexpression supports clinical gene transfer trial in LGMD2D. Neurology. 2008;71(4):240.

    Article  CAS  Google Scholar 

  51. Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G, Lewis S, et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol. 2010;68(5):629–38.

    Article  CAS  Google Scholar 

  52. Hamel J, Tawil R. Facioscapulohumeral muscular dystrophy: update on pathogenesis and future treatments. Neurother: J Am Soc Exp NeuroTher. 2018;15(4):863–71.

    Article  Google Scholar 

  53. Hamel J, Johnson N, Tawil R, Martens WB, Dilek N, McDermott MP, et al. Patient-reported symptoms in facioscapulohumeral muscular dystrophy (PRISM-FSHD). Neurology. 2019;93(12):e1180–92.

    Article  CAS  Google Scholar 

  54. Geng LN, Yao Z, Snider L, Fong AP, Cech JN, Young JM, et al. DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell. 2012;22(1):38–51.

    Article  CAS  Google Scholar 

  55. Statland JM, Tawil R. Facioscapulohumeral muscular dystrophy. Continuum (Minneap Minn). 2016;22(6, Muscle and Neuromuscular Junction Disorders):1916–31.

    Google Scholar 

  56. Chen JC, King OD, Zhang Y, Clayton NP, Spencer C, Wentworth BM, et al. Morpholino-mediated knockdown of DUX4 toward facioscapulohumeral muscular dystrophy therapeutics. Mol Ther: J Am Soc Gene Ther. 2016;24(8):1405–11.

    Article  Google Scholar 

  57. Wallace LM, Garwick SE, Mei W, Belayew A, Coppee F, Ladner KJ, et al. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol. 2011;69(3):540–52.

    Article  CAS  Google Scholar 

  58. Lek A, Rahimov F, Jones PL, Kunkel LM. Emerging preclinical animal models for FSHD. Trends Mol Med. 2015;21(5):295–306.

    Article  Google Scholar 

  59. Morosetti R, Gidaro T, Broccolini A, Gliubizzi C, Sancricca C, Tonali PA, et al. Mesoangioblasts from facioscapulohumeral muscular dystrophy display in vivo a variable myogenic ability predictable by their in vitro behavior. Cell Transplant. 2011;20(8):1299–313.

    Article  Google Scholar 

  60. Krom YD, Thijssen PE, Young JM, den Hamer B, Balog J, Yao Z, et al. Intrinsic epigenetic regulation of the D4Z4 macrosatellite repeat in a transgenic mouse model for FSHD. PLoS Genet. 2013;9(4):e1003415.

    Article  CAS  Google Scholar 

  61. Sharma V, Harafuji N, Belayew A, Chen YW. DUX4 differentially regulates transcriptomes of human rhabdomyosarcoma and mouse C2C12 cells. PLoS ONE. 2013;8(5):e64691.

    Article  CAS  Google Scholar 

  62. RNA, Small Interfering. 2022. [Available from: https://www.ncbi.nlm.nih.gov/mesh/?term=sirna. Accessed 1 Oct. 2022

  63. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–9.

    Article  CAS  Google Scholar 

  64. Wallace LM, Liu J, Domire JS, Garwick-Coppens SE, Guckes SM, Mendell JR, et al. RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol Ther: J Am Soc Gene Ther. 2012;20(7):1417–23.

    Article  CAS  Google Scholar 

  65. Sienkiewicz D, Kulak W, Okurowska-Zawada B, Paszko-Patej G, Kawnik K. Duchenne muscular dystrophy: current cell therapies. Ther Adv Neurol Disord. 2015;8(4):166–77.

    Article  CAS  Google Scholar 

  66. Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med. 2010;363(15):1429–37.

    Article  CAS  Google Scholar 

  67. Adzick NS. Fetal myelomeningocele: natural history, pathophysiology, and in-utero intervention. Semin Fetal Neonatal Med. 2010;15(1):9–14. https://doi.org/10.1016/j.siny.2009.05.002.

  68. Sacco A, Simpson L, Deprest J, David AL. A study to assess global availability of fetal surgery for myelomeningocele. Prenat Diagn. 2018;38(13):1020–7.

    Article  Google Scholar 

  69. Kunpalin Y, Subramaniam S, Perin S, Gerli MF, Bosteels J, Ourselin S, et al. Preclinical stem cell therapy in fetuses with myelomeningocele: a systematic review and meta-analysis. Prenat Diagn. 2021;41(3):283–300.

    Article  Google Scholar 

  70. Danzer E, Schwarz U, Wehrli S, Radu A, Adzick N, Flake A. Retinoic acid induced myelomeningocele in fetal rats: characterization by histopathological analysis and magnetic resonance imaging. Exp Neurol. 2005;194(2):467–75.

    Article  CAS  Google Scholar 

  71. Soltani Khaboushan A, Shakibaei M, Kajbafzadeh AM, Majidi Zolbin M. Prenatal Neural Tube Anomalies: A Decade of Intrauterine Stem Cell Transplantation Using Advanced Tissue Engineering Methods. Stem Cell Rev Rep. 2022;18(2):752–767. https://doi.org/10.1007/s12015-021-10150-w.

  72. Dugas A, Larghero J, Zérah M, Jouannic JM, Guilbaud L. Cell therapy for prenatal repair of myelomeningocele: A systematic review. Curr Res Transl Med. 2020;68(4):183–189. https://doi.org/10.1016/j.retram.2020.04.004.

  73. Li H, Gao F, Ma L, Jiang J, Miao J, Jiang M, et al. Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in rat foetuses with spina bifida aperta. J Cell Mol Med. 2012;16(7):1606–17.

    Article  CAS  Google Scholar 

  74. Ochiai D, Masuda H, Abe Y, Otani T, Fukutake M, Matsumoto T, Miyakoshi K, Tanaka M. Human Amniotic Fluid Stem Cells: Therapeutic Potential for Perinatal Patients with Intractable Neurological Disease. Keio J Med. 2018;67(4):57–66. https://doi.org/10.2302/kjm.2017-0019-IR.

  75. Lee D-H, Park S, Kim EY, Kim S-K, Chung Y-N, Cho B-K, et al. Enhancement of re-closure capacity by the intra-amniotic injection of human embryonic stem cells in surgically induced spinal open neural tube defects in chick embryos. Neurosci Lett. 2004;364(2):98–100.

    Article  CAS  Google Scholar 

  76. Wimalasundera N, Stevenson VL. Cerebral palsy. Pract Neurol. 2016;16(3):184–94.

    Article  Google Scholar 

  77. Novak I, McIntyre S, Morgan C, Campbell L, Dark L, Morton N, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910.

    Article  Google Scholar 

  78. Reddihough DS, Collins KJ. The epidemiology and causes of cerebral palsy. Aust J Physiother. 2003;49(1):7–12.

    Article  Google Scholar 

  79. Marret S, Vanhulle C, Laquerriere A. Pathophysiology of cerebral palsy. Handb Clin Neurol. 2013;111:169–76. https://doi.org/10.1016/B978-0-444-52891-9.00016-6.

  80. Nabetani M, Mukai T, Shintaku H. Preventing Brain Damage from Hypoxic-Ischemic Encephalopathy in Neonates: Update on Mesenchymal Stromal Cells and Umbilical Cord Blood Cells. Am J Perinatol. 2021. https://doi.org/10.1055/s-0041-1726451.

  81. Mathewson MA, Lieber RL. Pathophysiology of muscle contractures in cerebral palsy. Phys Med Rehabil Clin N Am. 2015;26(1):57–67.

    Article  Google Scholar 

  82. Wilson MD. Animal models of cerebral palsy: hypoxic brain injury in the newborn. Iran J Child Neurol. 2015;9(2):9.

    Google Scholar 

  83. Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. Can neonatal systemic inflammation and hypoxia yield a cerebral palsy-like phenotype in periadolescent mice? Mol Neurobiol. 2019;56(10):6883–900.

    Article  CAS  Google Scholar 

  84. Yu Y, Li L, Shao X, Tian F, Sun Q. Establishing a rat model of spastic cerebral palsy by targeted ethanol injection. Neural Regen Res. 2013;8(34):3255.

    CAS  Google Scholar 

  85. Paton MCB, Allison BJ, Li J, Fahey MC, Sutherland AE, Nitsos I, et al. Human umbilical cord blood therapy protects cerebral white matter from systemic LPS exposure in preterm fetal sheep. Dev Neurosci. 2018;40(3):258–70.

    Article  CAS  Google Scholar 

  86. Beldick SR, Hong J, Altamentova S, Khazaei M, Hundal A, Zavvarian MM, et al. Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS ONE. 2018;13(11):e0208105.

    Article  Google Scholar 

  87. Kiasatdolatabadi A, Lotfibakhshaiesh N, Yazdankhah M, Ebrahimi-Barough S, Jafarabadi M, Ai A, et al. The role of stem cells in the treatment of cerebral palsy: a review. Mol Neurobiol. 2017;54(7):4963–72.

    Article  CAS  Google Scholar 

  88. Lv ZY, Li Y, Liu J. Progress in clinical trials of stem cell therapy for cerebral palsy. Neural Regen Res. 2021;16(7):1377–82.

    Article  Google Scholar 

  89. Kułak-Bejda A, Kułak P, Bejda G, Krajewska-Kułak E, Kułak W. Stem cells therapy in cerebral palsy: a systematic review. Brain Dev. 2016;38(8):699–705.

    Article  Google Scholar 

  90. McDonald CA, Penny TR, Paton MCB, Sutherland AE, Nekkanti L, Yawno T, et al. Effects of umbilical cord blood cells, and subtypes, to reduce neuroinflammation following perinatal hypoxic-ischemic brain injury. J Neuroinflammation. 2018;15(1):47.

    Article  Google Scholar 

  91. Vankeshwaram V, Maheshwary A, Mohite D, Omole JA, Khan S. Is stem cell therapy the new savior for cerebral palsy patients? A review. Cureus. 2020;12(9):e10214.

    Google Scholar 

  92. Boruczkowski D, Pujal JM, Zdolińska-Malinowska I. Autologous cord blood in children with cerebral palsy: a review. Int J Mol Sci. 2019;20(10):2433. https://doi.org/10.3390/ijms20102433.

  93. McDonald CA, Fahey MC, Jenkin G, Miller SL. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options. Pediatr Res. 2018;83(1–2):333–44.

    Article  CAS  Google Scholar 

  94. Abe Y, Ochiai D, Sato Y, Otani T, Fukutake M, Ikenoue S, et al. Amniotic fluid stem cells as a novel strategy for the treatment of fetal and neonatal neurological diseases. Placenta. 2021;104:247–52.

    Article  CAS  Google Scholar 

  95. Park YJ, Borlongan CV, Dezawa M. Cell-based treatment for perinatal hypoxic-ischemic encephalopathy. Brain Circ. 2021;7(1):13–7.

    Article  Google Scholar 

  96. Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res. 2018;83(1–2):345–55.

    Article  Google Scholar 

  97. McDonald CA, Djuliannisaa Z, Petraki M, Paton MCB, Penny TR, Sutherland AE, Castillo-Melendez M, Novak I, Jenkin G, Fahey MC, Miller SL. Intranasal Delivery of Mesenchymal Stromal Cells Protects against Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci. 2019;20(10):2449. https://doi.org/10.3390/ijms20102449.

  98. Oppliger B, Joerger-Messerli M, Mueller M, Reinhart U, Schneider P, Surbek DV, et al. Intranasal delivery of umbilical cord-derived mesenchymal stem cells preserves myelination in perinatal brain damage. Stem Cells Dev. 2016;25(16):1234–42.

    Article  CAS  Google Scholar 

  99. Romanov YA, Tarakanov OP, Radaev SM, Dugina TN, Ryaskina SS, Darevskaya AN, et al. Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile patients with cerebral palsy. Cytotherapy. 2015;17(7):969–78.

    Article  Google Scholar 

  100. Penny TR, Pham Y, Sutherland AE, Mihelakis JG, Lee J, Jenkin G, et al. Multiple doses of umbilical cord blood cells improve long-term brain injury in the neonatal rat. Brain Res. 2020;1746:147001.

    Article  CAS  Google Scholar 

  101. Li X, Shang Q, Zhang L. Comparison of the efficacy of cord blood mononuclear cells (MNCs) and CD34+ cells for the treatment of neonatal mice with cerebral palsy. Cell Biochem Biophys. 2014;70(3):1539–44.

    Article  CAS  Google Scholar 

  102. Chang Y, Lin S, Li Y, Liu S, Ma T, Wei W. Umbilical cord blood CD34(+) cells administration improved neurobehavioral status and alleviated brain injury in a mouse model of cerebral palsy. Childs Nerv Syst. 2021;37(7):2197–205.

    Article  Google Scholar 

  103. Yang H, Tian S, Xie L, Chen Y, Ma L. Intranasal administration of Cytoglobin modifies human umbilical cord-derived mesenchymal stem cells and improves hypoxic-ischemia brain damage in neonatal rats by modulating p38 MAPK signaling-mediated apoptosis. Mol Med Rep. 2020;22(4):3493–503.

    CAS  Google Scholar 

  104. Porambo M, Phillips AW, Marx J, Ternes K, Arauz E, Pletnikov M, et al. Transplanted glial restricted precursor cells improve neurobehavioral and neuropathological outcomes in a mouse model of neonatal white matter injury despite limited cell survival. Glia. 2015;63(3):452–65.

    Article  Google Scholar 

  105. Huang L, Zhang C, Gu J, Wu W, Shen Z, Zhou X, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant. 2018;27(2):325–34.

    Article  Google Scholar 

  106. Sun JM, Song AW, Case LE, Mikati MA, Gustafson KE, Simmons R, et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: a randomized, placebo-controlled trial. Stem Cells Transl Med. 2017;6(12):2071–8.

    Article  CAS  Google Scholar 

  107. Sun JM, Case LE, Mikati MA, M Jasien J, McLaughlin C, Waters-Pick B, Worley G, Troy J, Kurtzberg J. Sibling umbilical cord blood infusion is safe in young children with cerebral palsy. Stem Cells Transl Med. 2021;10(9):1258–1265. https://doi.org/10.1002/sctm.20-0470.

  108. Gu J, Huang L, Zhang C, Wang Y, Zhang R, Tu Z, et al. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial. Stem Cell Res Ther. 2020;11(1):43.

    Article  CAS  Google Scholar 

  109. Bansal H, Singh L, Verma P, Agrawal A, Leon J, Sundell IB, et al. Administration of autologous bone marrow-derived stem cells for treatment of cerebral palsy patients: a proof of concept. J Stem Cells. 2016;11(1):37–49.

    CAS  Google Scholar 

  110. Nguyen LT, Nguyen AT, Vu CD, Ngo DV, Bui AV. Outcomes of autologous bone marrow mononuclear cells for cerebral palsy: an open label uncontrolled clinical trial. BMC Pediatr. 2017;17(1):104.

    Article  Google Scholar 

  111. Liu X, Fu X, Dai G, Wang X, Zhang Z, Cheng H, et al. Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy. J Transl Med. 2017;15(1):48.

    Article  Google Scholar 

  112. Zali A, Arab L, Ashrafi F, Mardpour S, Niknejhadi M, Hedayati-Asl AA, et al. Intrathecal injection of CD133-positive enriched bone marrow progenitor cells in children with cerebral palsy: feasibility and safety. Cytotherapy. 2015;17(2):232–41.

    Article  CAS  Google Scholar 

  113. Rah WJ, Lee YH, Moon JH, Jun HJ, Kang HR, Koh H, et al. Neuroregenerative potential of intravenous G-CSF and autologous peripheral blood stem cells in children with cerebral palsy: a randomized, double-blind, cross-over study. J Transl Med. 2017;15(1):16.

    Article  Google Scholar 

  114. Wang X, Hu H, Hua R, Yang J, Zheng P, Niu X, et al. Effect of umbilical cord mesenchymal stromal cells on motor functions of identical twins with cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy. 2015;17(2):224–31.

    Article  Google Scholar 

  115. Thanh LN, Trung KN, Duy CV, Van DN, Hoang PN, Phuong ANT, et al. Improvement in gross motor function and muscle tone in children with cerebral palsy related to neonatal icterus: an open-label, uncontrolled clinical trial. BMC Pediatr. 2019;19(1):290.

    Article  Google Scholar 

  116. Cotten CM, Murtha AP, Goldberg RN, Grotegut CA, Smith PB, Goldstein RF, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164(5):973-9.e1.

    Article  Google Scholar 

  117. Min K, Suh MR, Cho KH, Park W, Kang MS, Jang SJ, et al. Potentiation of cord blood cell therapy with erythropoietin for children with CP: a 2 × 2 factorial randomized placebo-controlled trial. Stem Cell Res Ther. 2020;11(1):509.

    Article  CAS  Google Scholar 

  118. Park KI, Himes BT, Stieg PE, Tessler A, Fischer I, Snyder EY. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp Neurol. 2006;199(1):179–90.

    Article  CAS  Google Scholar 

  119. Wen L, Sun J, Chen X, Du R. miR-135b-dependent downregulation of S100B promotes neural stem cell differentiation in a hypoxia/ischemia-induced cerebral palsy rat model. Am J Physiol Cell Physiol. 2020;319(6):C955–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Nabian.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 333 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irajian, A.H., Presedo, A., Akbarzadeh Pasha, B. et al. Cell-Based and Gene-Based Therapy Approaches in Neuro-orthopedic Disorders: a Literature Review. Regen. Eng. Transl. Med. 9, 315–327 (2023). https://doi.org/10.1007/s40883-022-00284-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-022-00284-9

Keywords

Navigation