Skip to main content

Advertisement

Log in

The Effect of Co-treating Human Mesenchymal Stem Cells with Epigallocatechin Gallate and Hypoxia-Inducible Factor-1 on the Expression of RANKL/RANK/OPG Signaling Pathway, Osteogenesis, and Angiogenesis Genes

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) were considered the promising source in the regeneration of bone tissue. These cells have been known to have the ability to differentiate into the osteogenic lineage. The identification of the new approaches improved the efficiency of these cells in bone tissue engineering. In the present study, we investigated the combinational effect of epigallocatechin gallate (EGCG) and hypoxia-inducible factor-1 (HIF-1) on the osteogenic differentiation ability of human bone marrow-mesenchymal stem cells (BM-MSCs). Ten differently treated groups of BM-MSCs were evaluated by expression analysis of osteogenic and angiogenic markers including Runx2, COL1A1, SPARC, VEGF, and ALP as well as RANKL/RANK/OPG pathway genes. They included the experimental (cells treated with the culture medium containing 5, 10, and 20 μM EGCG with 15, 30, and 45 ng/ml HIF-1 or without HIF-1) and the control groups (untreated cells). The obtained results indicated that the co-treating with 5 μM EGCG+ 30 ng/ml HIF-1 increased the osteogenic ability of BM-MSCs as compared with the other experimental groups and the control cells. Furthermore, treatment with EGCG and HIF-1 showed to be associated with the RANKL upregulation as well as OPG downregulation. These observations suggested that HIF-1 improved the EGCG efficiency in the MSC differentiation into the osteogenic lineage.

Lay Summary

The administration of mesenchymal stem cells (MSCs) has been suggested to be a potential therapy tool in the repair of bone tissue. The identification of novel approaches could play an important role in the improvement of bone tissue engineering. In the present study, we investigated the effect of co-treating the human MSCs with epigallocatechin gallate (EGCG) and hypoxia-inducible factor-1 (HIF-1). The obtained results provided the better understanding about the effect of EGCG and HIF-1 on expression level of Runx2, COL1A1, SPARC, VEGF, ALP, OPG, and RANKL genes in the treated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213(2):341–7.

    Article  CAS  Google Scholar 

  2. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol. 2009;217(2):318–24.

    Article  CAS  Google Scholar 

  3. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49(3):328–37.

    Article  CAS  Google Scholar 

  4. Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med. 1999;1(2):121–33.

    Article  CAS  Google Scholar 

  5. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001;97(5):1227–31.

    Article  CAS  Google Scholar 

  6. Liu W, Fan JB, Xu DW, Zhang J, Cui ZM. Epigallocatechin-3-gallate protects against tumor necrosis factor alpha induced inhibition of osteogenesis of mesenchymal stem cells. Exp Biol Med (Maywood). 2016;241(6):658–66.

    Article  CAS  Google Scholar 

  7. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5(3):309–13.

    Article  CAS  Google Scholar 

  8. von Bahr L, Batsis I, Moll G, Hägg M, Szakos A, Sundberg B, et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells. 2012;30(7):1575–8.

    Article  Google Scholar 

  9. Seebach E, Freischmidt H, Holschbach J, Fellenberg J, Richter W. Mesenchymal stroma cells trigger early attraction of M1 macrophages and endothelial cells into fibrin hydrogels, stimulating long bone healing without long-term engraftment. Acta Biomater. 2014;10(11):4730–41.

    Article  CAS  Google Scholar 

  10. Tsai CC, Yew TL, Yang DC, Huang WH, Hung SC. Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res. 2012;2(3):148–59.

    CAS  Google Scholar 

  11. Yun JH, Pang EK, Kim CS, Yoo YJ, Cho KS, Chai JK, et al. Inhibitory effects of green tea polyphenol (-)-epigallocatechin gallate on the expression of matrix metalloproteinase-9 and on the formation of osteoclasts. J Periodontal Res. 2004;39(5):300–7.

    Article  CAS  Google Scholar 

  12. Lin SY, Kang L, Wang CZ, Huang HH, Cheng TL, Huang HT, et al. (-)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic differentiation of human bone marrow mesenchymal stem cells. Molecules. 2018;23(12):3221.

    Article  Google Scholar 

  13. Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int. 2005;16(12):2039–45.

    Article  CAS  Google Scholar 

  14. Chen CH, Kang L, Lin RW, Fu YC, Lin YS, Chang JK, et al. (-)-Epigallocatechin-3-gallate improves bone microarchitecture in ovariectomized rats. Menopause. 2013;20(6):687–94.

    Article  Google Scholar 

  15. Song D, Gan M, Zou J, Zhu X, Shi Q, Zhao H, et al. Effect of (-)-epigallocatechin-3-gallate in preventing bone loss in ovariectomized rats and possible mechanisms. Int J Clin Exp Med. 2014;7(11):4183–90.

    Google Scholar 

  16. Lin SY, Kang L, Chen JC, Wang CZ, Huang HH, Lee MJ, et al. (-)-Epigallocatechin-3-gallate (EGCG) enhances healing of femoral bone defect. Phytomedicine. 2019;55:165–71.

    Article  CAS  Google Scholar 

  17. Chen ST, Kang L, Wang CZ, Huang PJ, Huang HT, Lin SY, et al. (-)-Epigallocatechin-3-gallate decreases osteoclastogenesis via modulation of RANKL and osteoprotegrin. Molecules. 2019;24(1):156.

    Article  Google Scholar 

  18. Phetfong J, Sanvoranart T, Nartprayut K, Nimsanor N, Seenprachawong K, Prachayasittikul V, et al. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett. 2016;21:12.

    Article  Google Scholar 

  19. Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med. 2000;192(4):463–74.

    Article  CAS  Google Scholar 

  20. Boyce BF, Xing L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep. 2007;5(3):98–104.

    Article  Google Scholar 

  21. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  CAS  Google Scholar 

  22. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun. 1998;247(3):610–5.

    Article  CAS  Google Scholar 

  23. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12(9):1260–8.

    Article  CAS  Google Scholar 

  24. Costa V, Raimondi L, Conigliaro A, Salamanna F, Carina V, De Luca A, et al. Hypoxia-inducible factor 1Α may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Cytotherapy. 2017;19(12):1412–25.

    Article  CAS  Google Scholar 

  25. Wagegg M, Gaber T, Lohanatha FL, Hahne M, Strehl C, Fangradt M, et al. Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS One. 2012;7(9):e46483.

    Article  CAS  Google Scholar 

  26. Zou D, Han W, You S, Ye D, Wang L, Wang S, et al. In vitro study of enhanced osteogenesis induced by HIF-1α-transduced bone marrow stem cells. Cell Prolif. 2011;44(3):234–43.

    Article  CAS  Google Scholar 

  27. Huang B, Qian J, Ma J, Huang Z, Shen Y, Chen X, et al. Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Res Ther. 2014;5(1):22.

    Article  Google Scholar 

  28. Wei HY, Liu JL, Lv BJ, Xing L, Fu SY. SPARC modulates expression of extracellular matrix genes in human trabecular meshwork cells. Acta Ophthalmol. 2012;90(2):e138–43.

    Article  Google Scholar 

  29. Prins HJ, Braat AK, Gawlitta D, Dhert WJ, Egan DA, Tijssen-Slump E, et al. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Res. 2014;12(2):428–40.

    Article  CAS  Google Scholar 

  30. Kurata H, Guillot PV, Chan J, Fisk NM. Osterix induces osteogenic gene expression but not differentiation in primary human fetal mesenchymal stem cells. Tissue Eng. 2007;13(7):1513–23.

    Article  CAS  Google Scholar 

  31. Liu E, Morimoto M, Kitajima S, Koike T, Yu Y, Shiiki H, et al. Increased expression of vascular endothelial growth factor in kidney lead to progressive impairment of glomerular functions. J Am Soc Nephrol. 2007;18(7):2094–104.

    Article  CAS  Google Scholar 

  32. Otero L, García DA, Wilches-Buitrago L. Expression and presence of OPG and RANKL mRNA and protein in human periodontal ligament with orthodontic force. Gene Regul Syst Bio. 2016;10:15–20.

    CAS  Google Scholar 

  33. Menezes R, Garlet TP, Letra A, Bramante CM, Campanelli AP, Figueira Rde C, et al. Differential patterns of receptor activator of nuclear factor kappa B ligand/osteoprotegerin expression in human periapical granulomas: possible association with progressive or stable nature of the lesions. J Endod. 2008;34(8):932–8.

    Article  Google Scholar 

  34. Zajdel A, Kałucka M, Kokoszka-Mikołaj E, Wilczok A. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Whart on’s jelly of the umbilical cord. Acta Biochim Pol. 2017;64(2):365–9.

    Article  CAS  Google Scholar 

  35. Kalalinia F, Ghasim H, Amel Farzad S, Pishavar E, Ramezani M, Hashemi M. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sci. 2018;208:262–7.

    Article  CAS  Google Scholar 

  36. Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S. Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One. 2011;6(10):e26211.

    Article  CAS  Google Scholar 

  37. Westhauser F, Karadjian M, Essers C, Senger AS, Hagmann S, Schmidmaier G, et al. Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented β-TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA. PLoS One. 2019;14(2):e0212799.

    Article  CAS  Google Scholar 

  38. Devine A, Hodgson JM, Dick IM, Prince RL. Tea drinking is associated with benefits on bone density in older women. Am J Clin Nutr. 2007;86(4):1243–7.

    Article  CAS  Google Scholar 

  39. Muraki S, Yamamoto S, Ishibashi H, Oka H, Yoshimura N, Kawaguchi H, et al. Diet and lifestyle associated with increased bone mineral density: cross-sectional study of Japanese elderly women at an osteoporosis outpatient clinic. J Orthop Sci. 2007;12(4):317–20.

    Article  Google Scholar 

  40. Jin P, Li M, Xu G, Zhang K, Zheng LI, Zhao J. Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer? Exp Ther Med. 2015;10(2):828–34.

    Article  CAS  Google Scholar 

  41. Sun X, Wei Y. The role of hypoxia-inducible factor in osteogenesis and chondrogenesis. Cytotherapy. 2009;11(3):261–7.

    Article  CAS  Google Scholar 

  42. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  Google Scholar 

  43. Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y, et al. Tissue engineered ceramic artificial joint--ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials. 2005;26(22):4654–61.

    Article  CAS  Google Scholar 

  44. Marrazzo P, Angeloni C, Freschi M, Lorenzini A, Prata C, Maraldi T, et al. Combination of epigallocatechin gallate and sulforaphane counteracts in vitro oxidative stress and delays stemness loss of amniotic fluid stem cells. Oxidative Med Cell Longev. 2018;2018:5263985.

    Article  Google Scholar 

  45. Kamon M, Zhao R, Sakamoto K. Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells. Cell Biol Int. 2009;34(1):109–16.

    Google Scholar 

  46. Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol. 2010;658:43–9.

    Article  CAS  Google Scholar 

  47. Xu J, Li Z, Hou Y, Fang W. Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. Am J Transl Res. 2015;7(12):2527–35.

    CAS  Google Scholar 

  48. Na K, Kim SW, Sun BK, Woo DG, Yang HN, Chung HM, et al. Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials. 2007;28(16):2631–7.

    Article  CAS  Google Scholar 

  49. Kaur G, Valarmathi MT, Potts JD, Jabbari E, Sabo-Attwood T, Wang Q. Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates. Biomaterials. 2010;31(7):1732–41.

    Article  CAS  Google Scholar 

  50. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623–8.

    Article  CAS  Google Scholar 

  51. Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr. 2009;19(1):61–72.

    Article  CAS  Google Scholar 

  52. Heinrich J, Bsoul S, Barnes J, Woodruff K, Abboud S. CSF-1, RANKL and OPG regulate osteoclastogenesis during murine tooth eruption. Arch Oral Biol. 2005;50(10):897–908.

    Article  CAS  Google Scholar 

  53. Cho KA, Park M, Kim YH, Ryu KH, Woo SY. Mesenchymal stem cells inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via osteoprotegerin activity. Oncotarget. 2017;8(48):83419–31.

    Article  Google Scholar 

Download references

Funding

The present study was financially supported by “Research Department of the School of Medicine Shahid Beheshti University of Medical Sciences” (Grant No 10489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Fazeli.

Ethics declarations

Ethical Approval

The present study was approved by the Ethics Committee of the School of Medicine Shahid Beheshti University of Medical Sciences (Tehran, Iran; Ethical code: IR.SBMU.MSP.REC.1396.609).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, B., Esmaeilizade, Z., Omrani, M.D. et al. The Effect of Co-treating Human Mesenchymal Stem Cells with Epigallocatechin Gallate and Hypoxia-Inducible Factor-1 on the Expression of RANKL/RANK/OPG Signaling Pathway, Osteogenesis, and Angiogenesis Genes. Regen. Eng. Transl. Med. 8, 117–124 (2022). https://doi.org/10.1007/s40883-021-00197-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-021-00197-z

Keywords

Navigation