Skip to main content
Log in

Ligament Regenerative Engineering: Braiding Scalable and Tunable Bioengineered Ligaments Using a Bench-Top Braiding Machine

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Anterior cruciate ligament (ACL) injuries are common sports injuries that typically require surgical intervention. Autografts and allografts are used to replace damaged ligaments. The drawbacks of autografts and allografts, which include donor site morbidity and variability in quality, have spurred research in the development of bioengineered ligaments. Herein, the design and development of a cost-effective bench-top 3D braiding machine that fabricates scalable and tunable bioengineered ligaments is described. It was demonstrated that braiding angle and picks per inch can be controlled with the bench-top braiding machine. Pore sizes within the reported range needed for vascularization and bone regeneration are demonstrated. By considering a one-to-one linear relationship between cross-sectional area and peak load, the bench-top braiding machine can theoretically fabricate bioengineered ligaments with a peak load that is 9 × greater than the human ACL. This bench-top braiding machine is generalizable to all types of yarns and may be used for regenerative engineering applications.

Lay Summary

Worldwide, 400,000 ACL reconstructions are performed annually. Rehabilitation after ACL reconstruction can take greater than 8 months, and the recurrence of ACL rupture is 30% in young active patients. Therefore, significant efforts have been made to develop an off-the-shelf ACL that is functionally superior to current ACL grafts. This study describes the development of a bench-top braiding machine that can be used in research laboratories to investigate the fabrication of bioengineered ACLs that are much stronger than current ACL grafts.

Future Work

Future studies will investigate the development of bioengineered ACL matrices made of non-degradable and degradable polymers, and in vivo experiments will be conducted to determine the functionality of the bioengineered ACL matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mengsteab PY, Nair LS, Laurencin CT. The past, present and future of ligament regenerative engineering. Regen Med. 2016;11:871–81 [Internet]. Future Science Group. [cited 2019 Jan 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27879170.

    Article  CAS  Google Scholar 

  2. Mengsteab PY, McKenna M, Cheng J, Sun Z, Laurencin CT. Regenerative engineering of the anterior cruciate ligament. In: Oliveira JM, Reis RL, editors. Regen Strateg Treat Knee Jt Disabil. Cham: Springer International Publishing; 2017. p. 391–410. [Internet]. Available from. https://doi.org/10.1007/978-3-319-44785-8_19.

    Chapter  Google Scholar 

  3. Teuschl A, Heimel P, Nürnberger S, Van Griensven M, Redl H, Nau T. A novel silk fiber-based scaffold for regeneration of the anterior cruciate ligament: Histological results from a study in sheep. Am J Sports Med. 2016;44:1547–57 [Internet]. American Orthopaedic Society for Sports Medicine. [cited 2016 May 16]. Available from: http://ajs.sagepub.com/content/early/2016/03/07/0363546516631954.full.

    Article  Google Scholar 

  4. Fan H, Liu H, Toh SL, Goh JCH. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009;30:4967–77 [Internet]. [cited 2015 Mar 17]; Available from: http://www.sciencedirect.com/science/article/pii/S0142961209005791.

    Article  CAS  Google Scholar 

  5. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002;23:4131–41 [Internet]. [cited 2016 May 17. Available from: http://www.sciencedirect.com/science/article/pii/S0142961202001564.

    Article  CAS  Google Scholar 

  6. Laurent CP, Ganghoffer JF, Babin J, Six JL, Wang X, Rahouadj R. Morphological characterization of a novel scaffold for anterior cruciate ligament tissue engineering. J Biomech Eng. 2011;133:065001. [Internet]. Available from. https://doi.org/10.1115/1.4004250.

    Article  Google Scholar 

  7. Gurlek AC, Sevinc B, Bayrak E, Erisken C. Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration. Mater Sci Eng C. 2017;71:820–6 [Internet]. Elsevier. [cited 2019 Jun 5]. Available from: https://www.sciencedirect.com/science/article/pii/S0928493116308748.

    Article  CAS  Google Scholar 

  8. Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials. 2005;26:4805–16 [Internet]. [cited 2014 Sep 6]. Available from: http://www.sciencedirect.com/science/article/pii/S0142961204010543.

    Article  CAS  Google Scholar 

  9. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005;26:1523–32 [Internet]. [cited 2014 Sep 6]. Available from: http://www.sciencedirect.com/science/article/pii/S0142961204004909.

    Article  CAS  Google Scholar 

  10. Cooper JA, Bailey LAO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials. 2006;27:2747–54 [Internet]. [cited 2014 Sep 16]. Available from: http://www.sciencedirect.com/science/article/pii/S0142961205011671.

    Article  CAS  Google Scholar 

  11. Madhavarapu S, Rao R, Libring S, Fleisher E, Yankannah Y, Freeman JW. Design and characterization of three-dimensional twist-braid scaffolds for anterior cruciate ligament regeneration. Technology. 2017;05:98–106 [Internet]. World Scientific Publishing Company. [cited 2019 Jun 19]. Available from: http://www.worldscientific.com/doi/abs/10.1142/S2339547817500066.

    Article  Google Scholar 

  12. Hahner J, Hinüber C, Breier A, Siebert T, Brünig H, Heinrich G. Adjusting the mechanical behavior of embroidered scaffolds to lapin anterior cruciate ligaments by varying the thread materials. Text Res J. 2015;85:1431–44.

    Article  CAS  Google Scholar 

  13. Mengsteab PY, Conroy P, Badon M, Otsuka T, Kan HM, Vella AT, et al. Evaluation of a bioengineered ACL matrix’s osteointegration with BMP-2 supplementation. PLoS One. 2020;15:1–18.

    Article  Google Scholar 

  14. Yu X, Mengsteab PY, Narayanan G, Nair LS, Laurencin CT. Enhancing the Surface Properties of a Bioengineered Anterior Cruciate Ligament Matrix for Use with Point-of-Care Stem Cell Therapy. Engineering. 2020. https://doi.org/10.1016/j.eng.2020.02.010.

  15. Laurencin CT, Nair LS. Next Generation Devices and Technologies Through Regenerative Engineering. In: Shorey R., Ghosh P. (eds) Healthcare Engineering. Singapore: Springer; 2017. https://doi.org/10.1007/978-981-10-3111-3_4.

  16. Chen X, Qi YY, Wang LL, Yin Z, Yin GL, Zou XH, et al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials. 2008;29:3683–92.

    Article  CAS  Google Scholar 

  17. Alagirusamy R, Padaki N. Introduction to braiding. In: Rana S, Fangueiro R, editors. Braided Struct Compos. Boca Raton: CRC Press; 2015. p. 3–19.

    Chapter  Google Scholar 

  18. Akbari M, Tamayol A, Bagherifard S, Serex L, Mostafalu P, Faramarzi N, et al. Textile technologies and tissue engineering: a path toward organ weaving. Adv Healthc Mater. 2016;5:751–66.

    Article  CAS  Google Scholar 

  19. Cooper JA, Sahota JS, Gorum WJ, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci U S A. 2007;104:3049–54 [Internet]. [cited 2014 Sep 16]. Available from: http://www.pnas.org/content/104/9/3049.full.

    Article  CAS  Google Scholar 

  20. Samuel PS, Mintz BR, Lee KL, Cooper JA. Ligament regenerative engineering. In: Laurencin CT, Khan Y, editors. Regen Eng. Boca Raton: Taylor & Francis Group; 2013. p. 331–59.

    Google Scholar 

  21. Gereke T, Döbrich O, Aibibu D, Nowotny J, Cherif C. Approaches for process and structural finite element simulations of braided ligament replacements. J Ind Text. 2017;47:408–25.

    Article  Google Scholar 

  22. Du GW, Ko FK. Unit cell geometry of 3-D braided structures. J Reinf Plast Compos. 1993;12:752–68 [Internet]. Sage PublicationsSage CA: Thousand Oaks, CA. [cited 2020 Feb 26]. Available from: http://journals.sagepub.com/doi/10.1177/073168449301200702.

    Article  Google Scholar 

  23. Byun JH, Chou TW. Process-microstructure relationships of 2-step and 4-step braided composites. Compos Sci Technol. 1996;56:235–51 [Internet]. Elsevier. [cited 2019 Aug 24]. Available from: https://www.sciencedirect.com/science/article/pii/0266353895001123.

    Article  Google Scholar 

  24. Freeman JW, Woods MD, Cromer DA, Wright LD, Laurencin CT. Tissue engineering of the anterior cruciate ligament: the viscoelastic behavior and cell viability of a novel braid-twist scaffold. J Biomater Sci Polym Ed. 2009;20:1709–28 [Internet]. Taylor & Francis Group. [cited 2016 Aug 13]. Available from: http://www.tandfonline.com/doi/abs/10.1163/156856208X386282.

    Article  CAS  Google Scholar 

  25. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–54 [Internet]. NIH Public Access. [cited 2019 May 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22939815.

    Article  CAS  Google Scholar 

  26. Noyes FR, Grood ES. The strength of the anterior cruciate ligament in humans and rhesus monkeys: Age related and species related changes. J Bone Jt Surg-Ser A. 1976;58:1074–1082.

  27. Dargel J, Gotter M, Mader K, Pennig D, Koebke J, Schmidt-Wiethoff R. Biomechanics of the anterior cruciate ligament and implications for surgical reconstruction. Strategies Trauma Limb Reconstr. 2007;2:1–12 [Internet]. [cited 2015 Apr 16]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2321720&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  28. Poulsen MR, Johnson DL. Graft selection in anterior cruciate ligament surgery. Orthopedics. 2010;33:197–207 [Internet]. [cited 2018 Jun 30]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8998900.

    Article  Google Scholar 

  29. Milano G, Mulas PD, Ziranu F, Piras S, Manunta A, Fabbriciani C. Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: a biomechanical analysis. Arthroscopy. 2006;22:660–8 [Internet]. W.B. Saunders. [cited 2019 May 8]. Available from: https://www.sciencedirect.com/science/article/pii/S0749806306005652.

    Article  Google Scholar 

  30. Walsh WR, Bertollo N, Arciero RA, Stanton RA, Poggie RA. Long-term in-vivo evaluation of a resorbable PLLA scaffold for regeneration of the ACL. Orthop J Sport Med. 2015;3. https://doi.org/10.1177/2325967115S00033.

Download references

Funding

This research was supported by funding from the Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, NIH R01AR063698, and NIH DP1AR068147. Paulos Y. Mengsteab was funded by NIH R01AR063698-02S1. Mohammed A. Barajaa was funded by the Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cato T. Laurencin.

Ethics declarations

Competing Interests

Dr. Cato T. Laurencin has the following competing financial interests: Biorez, Globus, HOT, HOT Bone, Kuros Bioscience, NPD & Cobb (W Montague) NMA Health Institute. Dr. Lakshmi S. Nair has the following competing financial interests: Biorez. The authors have no non-financial competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 2827 kb).

ESM 2

(XLSX 10 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengsteab, P.Y., Freeman, J., Barajaa, M.A. et al. Ligament Regenerative Engineering: Braiding Scalable and Tunable Bioengineered Ligaments Using a Bench-Top Braiding Machine. Regen. Eng. Transl. Med. 7, 524–532 (2021). https://doi.org/10.1007/s40883-020-00178-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-020-00178-8

Keywords

Navigation