Skip to main content

Advertisement

Log in

A Combinatorial Library of Biodegradable Polyesters Enables Non-viral Gene Delivery to Post-Mitotic Human Stem Cell-Derived Polarized RPE Monolayers

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Safe and effective delivery of DNA to post-mitotic cells, especially highly differentiated cells, remains a challenge despite significant progress in the development of gene delivery tools. Biodegradable polymeric nanoparticles (NPs) offer an array of advantages for gene delivery over viral vectors due to improved safety, carrying capacity, ease of manufacture, and cell-type specificity. Here we demonstrate the use of a high-throughput screening (HTS) platform to synthesize and screen a library of 148 biodegradable polymeric nanoparticles, successfully identifying structures that enable efficient transfection of human pluripotent stem cell differentiated human retinal pigment epithelial (RPE) cells with minimal toxicity. These NPs can deliver plasmid DNA (pDNA) to RPE monolayers more efficiently than leading commercially available transfection reagents. Novel synthetic polymers are described that enable high efficacy non-viral gene delivery to hard-to-transfect polarized human RPE monolayers, enabling gene loss- and gain-of-function studies of cell signaling, developmental, and disease-related pathways. One new synthetic polymer in particular, 3,3′-iminobis(N,N-dimethylpropylamine)-end terminated poly(1,5-pentanediol diacrylate-co-3 amino-1-propanol) (5–3-J12), was found to form self-assembled nanoparticles when mixed with plasmid DNA that transfect a majority of these human post-mitotic cells with minimal cytotoxicity. The platform described here can be utilized as an enabling technology for gene transfer to human primary and stem cell-derived cells, which are often fragile and resistant to conventional gene transfer approaches.

Lay Summary

Many retinal diseases are attributable to dysregulation in gene expression or lack of expression of specific genes, allowing for the possibility of prevention or cure of these diseases by effective delivery of nucleic acids coding for the necessary gene to the retina. Delivery of nucleic acids to cells of the retina is challenging due to the non-dividing nature of most retinal cells, preventing DNA from reaching the nucleus. To overcome this barrier, we engineered and tested a library of nanoparticle formulations to identify polymers that enabled safe and effective delivery of nucleic acid cargoes to retinal pigment epithelial cells. The nanoparticle technology explored here has the potential to be utilized for therapeutic delivery of nucleic acids to retinal cells, possibly enabling treatment for otherwise untreatable retinal diseases for which a specific genetic deficit is known but no drugs are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trapani I, Auricchio A. Seeing the light after 25 years of retinal gene therapy. Trends Mol Med. 2018;24(8):669–81.

    Google Scholar 

  2. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15(7):nrg3742.

    Google Scholar 

  3. Bitner H, Mizrahi-Meissonnier L, Griefner G, Erdinest I, Sharon D, Banin E. A homozygous frameshift mutation in BEST1 causes the classical form of BEST disease in an autosomal recessive mode. Invest Ophthalmol Vis Sci. 2011;52(8):5332–8.

    CAS  Google Scholar 

  4. den Hollander AI, Roepman R, Koenekoop RK, Cremers FPM. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419.

    Google Scholar 

  5. Liu X, Bulgakov OV, Darrow KN, Pawlyk B, Adamian M, Liberman MC, et al. Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A. 2007;104(11):4413–8.

    CAS  Google Scholar 

  6. Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther. 2006;17(3):253–63.

    CAS  Google Scholar 

  7. Wright JF. Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther. 2008;15(11):840–8.

    CAS  Google Scholar 

  8. Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. 2012;20(4):699–708.

    CAS  Google Scholar 

  9. Oliveira AV, Rosa da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. Mater Sci Eng C Mater Biol Appl. 2017;77:1275–89.

    CAS  Google Scholar 

  10. Boylan NJ, Kim AJ, Suk JS, Adstamongkonkul P, Simons BW, Lai SK, et al. Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine. Biomaterials. 2012;33(7):2361–71.

    CAS  Google Scholar 

  11. Cheng W, Yang C, Hedrick JL, Williams DF, Yang YY, Ashton-Rickardt PG. Delivery of a granzyme B inhibitor gene using carbamate-mannose modified PEI protects against cytotoxic lymphocyte killing. Biomaterials. 2013;34(14):3697–705.

    CAS  Google Scholar 

  12. de la Fuente M, Raviña M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev. 2010;62(1):100–17.

    Google Scholar 

  13. Kim TH, Park IK, Nah JW, Choi YJ, Cho CS. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials. 2004;25(17):3783–92.

    CAS  Google Scholar 

  14. Read ML, Singh S, Ahmed Z, Stevenson M, Briggs SS, Oupicky D, et al. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 2005;33(9):e86.

    Google Scholar 

  15. Wang H, Shi HB, Yin SK. Polyamidoamine dendrimers as gene delivery carriers in the inner ear: how to improve transfection efficiency. Exp Ther Med. 2011;2(5):777–81.

    CAS  Google Scholar 

  16. Yu H, Russ V, Wagner E. Influence of the molecular weight of bioreducible oligoethylenimine conjugates on the polyplex transfection properties. AAPS J. 2009;11(3):445–55.

    CAS  Google Scholar 

  17. Hornstein BD, Roman D, Arévalo-Soliz LM, Engevik MA, Zechiedrich L. Effects of circular DNA length on transfection efficiency by electroporation into HeLa cells. PLoS One. 2016;11(12):e0167537.

    Google Scholar 

  18. Vaughan EE, DeGiulio JV, Dean DA. Intracellular trafficking of plasmids for gene therapy: mechanisms of cytoplasmic movement and nuclear import. Curr Gene Ther. 2006;6(6):671–81.

    CAS  Google Scholar 

  19. Bishop CJ, Majewski RL, Guiriba TRM, Wilson DR, Bhise NS, Quiñones-Hinojosa A, et al. Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater. 2016;37:120–30.

    CAS  Google Scholar 

  20. Yang F, Green JJ, Dinio T, Keung L, Cho SW, Park H, et al. Gene delivery to human adult and embryonic cell-derived stem cells using biodegradable nanoparticulate polymeric vectors. Gene Ther. 2009;16(4):533–46.

    CAS  Google Scholar 

  21. Sunshine JC, Sunshine SB, Bhutto I, Handa JT, Green JJ. Poly(beta-amino ester)-nanoparticle mediated transfection of retinal pigment epithelial cells in vitro and in vivo. PLoS One. 2012;7(5):e37543.

    CAS  Google Scholar 

  22. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85(3):845–81.

    CAS  Google Scholar 

  23. Rodrigues GA, Shalaev E, Karami TK, Cunningham J, Slater NKH, Rivers HM. Pharmaceutical development of AAV-based gene therapy products for the eye. Pharm Res. 2018;36(2):29.

    Google Scholar 

  24. McClements ME, MacLaren RE. Adeno-associated virus (AAV) dual vector strategies for gene therapy encoding large transgenes. Yale J Biol Med. 2017;90(4):611–23.

    CAS  Google Scholar 

  25. Moore NA, Morral N, Ciulla TA, Bracha P. Gene therapy for inherited retinal and optic nerve degenerations. Expert Opin Biol Ther. 2018;18(1):37–49.

    CAS  Google Scholar 

  26. Planul A, Dalkara D. Vectors and gene delivery to the retina. Annu Rev Vis Sci. 2017;3:121–40.

    Google Scholar 

  27. Abul-Hassan K, Walmsley R, Boulton M. Optimization of non-viral gene transfer to human primary retinal pigment epithelial cells. Curr Eye Res. 2000;20(5):361–6.

    CAS  Google Scholar 

  28. Bejjani RA, BenEzra D, Cohen H, Rieger J, Andrieu C, Jeanny JC, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis. 2005;11:124–32.

    CAS  Google Scholar 

  29. Chaum E, Hatton MP, Stein G. Polyplex-mediated gene transfer into human retinal pigment epithelial cells in vitro. J Cell Biochem. 1999;76(1):153–60.

    CAS  Google Scholar 

  30. Jayaraman MS, et al. Nano chitosan peptide as a potential therapeutic carrier for retinal delivery to treat age-related macular degeneration. Mol Vis. 2012;18:2300–8.

    CAS  Google Scholar 

  31. Liu HA, Liu YL, Ma ZZ, Wang JC, Zhang Q. A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model. Invest Ophthalmol Vis Sci. 2011;52(7):4789–94.

    CAS  Google Scholar 

  32. Mannermaa E, Rönkkö S, Ruponen M, Reinisalo M, Urtti A. Long-lasting secretion of transgene product from differentiated and filter-grown retinal pigment epithelial cells after nonviral gene transfer. Curr Eye Res. 2005;30(5):345–53.

    CAS  Google Scholar 

  33. Mannisto M, et al. The role of cell cycle on polyplex-mediated gene transfer into a retinal pigment epithelial cell line. J Gene Med. 2005;7(4):466–76.

    CAS  Google Scholar 

  34. Mannisto M, et al. Structure-activity relationships of poly(L-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release. 2002;83(1):169–82.

    CAS  Google Scholar 

  35. Peeters L, Sanders NN, Jones A, Demeester J, de Smedt SC. Post-pegylated lipoplexes are promising vehicles for gene delivery in RPE cells. J Control Release. 2007;121(3):208–17.

    CAS  Google Scholar 

  36. Peng CH, Cherng JY, Chiou GY, Chen YC, Chien CH, Kao CL, et al. Delivery of Oct4 and SirT1 with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium. Biomaterials. 2011;32(34):9077–88.

    CAS  Google Scholar 

  37. Bishop CJ, Ketola TM, Tzeng SY, Sunshine JC, Urtti A, Lemmetyinen H, et al. The effect and role of carbon atoms in poly(beta-amino ester)s for DNA binding and gene delivery. J Am Chem Soc. 2013;135(18):6951–7.

    CAS  Google Scholar 

  38. Maruotti J, Wahlin K, Gorrell D, Bhutto I, Lutty G, Zack DJ. A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med. 2013;2(5):341–54.

    CAS  Google Scholar 

  39. Maruotti J, Sripathi SR, Bharti K, Fuller J, Wahlin KJ, Ranganathan V, et al. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci U S A. 2015;112(35):10950–5.

    CAS  Google Scholar 

  40. Gamm DM, Melvan JN, Shearer RL, Pinilla I, Sabat G, Svendsen CN, et al. A novel serum-free method for culturing human prenatal retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2008;49(2):788–99.

    Google Scholar 

  41. Wilson DR, Green JJ. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles, in Biomedical Nanotechnology: Springer; 2017. p. 31–46.

  42. Tzeng SY, Wilson DR, Hansen SK, Quiñones-Hinojosa A, Green JJ. Polymeric nanoparticle-based delivery of TRAIL DNA for cancer-specific killing. Bioeng Transl Med. 2016;1(2):149–59.

    CAS  Google Scholar 

  43. Shcherbakova DM, Verkhusha VV. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. 2013;10:751–4.

    CAS  Google Scholar 

  44. Tzeng SY, Guerrero-Cázares H, Martinez EE, Sunshine JC, Quiñones-Hinojosa A, Green JJ. Non-viral gene delivery nanoparticles based on poly(β-amino esters) for treatment of glioblastoma. Biomaterials. 2011;32(23):5402–10.

    CAS  Google Scholar 

  45. Green JJ, Zhou BY, Mitalipova MM, Beard C, Langer R, Jaenisch R, et al. Nanoparticles for gene transfer to human embryonic stem cell colonies. Nano Lett. 2008;8(10):3126–30.

    CAS  Google Scholar 

  46. Eltoukhy AA, Siegwart DJ, Alabi CA, Rajan JS, Langer R, Anderson DG. Effect of molecular weight of amine end-modified poly(β-amino ester)s on gene delivery efficiency and toxicity. Biomaterials. 2012;33(13):3594–603.

    CAS  Google Scholar 

  47. Bishop CJ, Ketola TM, Tzeng SY, Sunshine JC, Urtti A, Lemmetyinen H, et al. The effect and role of carbon atoms in poly(β-amino ester)s for DNA binding and gene delivery. J Am Chem Soc. 2013;135(18):6951–7.

    CAS  Google Scholar 

  48. Zugates GT, Peng W, Zumbuehl A, Jhunjhunwala S, Huang YH, Langer R, et al. Rapid optimization of gene delivery by parallel end-modification of poly (β-amino ester) s. Mol Ther. 2007;15(7):1306–12.

    CAS  Google Scholar 

  49. Anderson DG, Lynn DM, Langer R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem (International ed. in English. 2003;42(27):3153–8.

    CAS  Google Scholar 

  50. Akinc A, Anderson DG, Lynn DM, Langer R. Synthesis of poly (β-amino ester) s optimized for highly effective gene delivery. Bioconjug Chem. 2003;14(5):979–88.

    CAS  Google Scholar 

  51. Green JJ, Zugates GT, Tedford NC, Huang YH, Griffith LG, Lauffenburger DA, et al. Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Adv Mater. 2007;19(19):2836–42.

    CAS  Google Scholar 

  52. Sunshine J, Green JJ, Mahon KP, Yang F, Eltoukhy AA, Nguyen DN, et al. Small-molecule end-groups of linear polymer determine cell-type gene-delivery efficacy. Adv Mater. 2009;21(48):4947–51.

    CAS  Google Scholar 

  53. Sunshine JC, Peng DY, Green JJ. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. Mol Pharm. 2012;9(11):3375–83.

    CAS  Google Scholar 

  54. Cereso N, Pequignot MO, Robert L, Becker F, de Luca V, Nabholz N, et al. Proof of concept for AAV2/5-mediated gene therapy in iPSC-derived retinal pigment epithelium of a choroideremia patient. Mol Ther Methods Clin Dev. 2014;1:14011.

    CAS  Google Scholar 

  55. Sunshine JC, Akanda MI, Li D, Kozielski KL, Green JJ. Effects of base polymer hydrophobicity and end-group modification on polymeric gene delivery. Biomacromolecules. 2011;12(10):3592–600.

    CAS  Google Scholar 

  56. Sunshine JC, et al. Poly(β-amino ester)-nanoparticle mediated transfection of retinal pigment epithelial cells in vitro and in vivo. PLoS One. 2012;7(5):e37543–3.

  57. Kozielski KL, Tzeng SY, Hurtado de Mendoza BA, Green JJ. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. 2014;8(4):3232–41.

    CAS  Google Scholar 

  58. Wilson DR, Mosenia A, Suprenant MP, Upadhya R, Routkevitch D, Meyer RA, et al. Continuous microfluidic assembly of biodegradable poly(beta-amino ester)/DNA nanoparticles for enhanced gene delivery. J Biomed Mater Res A. 2017;105(6):1813–25.

    CAS  Google Scholar 

  59. Wilson DR, Routkevitch D, Wahlin KJ, Zack DJ, Quinones-Hinojosa A, Green JJ. Development of a pH sensor to probe endosomal buffering of polymeric nanoparticles effective for gene delivery. Mol Ther. 2016;24:S196.

    Google Scholar 

  60. Anderson DG, Peng W, Akinc A, Hossain N, Kohn A, Padera R, et al. A polymer library approach to suicide gene therapy for cancer. Proc Natl Acad Sci U S A. 2004;101(45):16028–33.

    CAS  Google Scholar 

  61. Liu H-S, Jan MS, Chou CK, Chen PH, Ke NJ. Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun. 1999;260(3):712–7.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Baranda S. Hansen for technical assistance. The authors thank the Wilmer Microscopy and Imaging Core Facility (EY001765) at Johns Hopkins for use of their confocal microscopy.

Funding

This research was supported by grants from the Maryland Stem Cell Research Fund to D.J.Z. (EY027266), NIH grant (EY024249) to D.J.Z, BrightFocus Foundation to D.J.Z., RPB Nelson Trust Award for Retinitis Pigmentosa and unrestricted funds from Research to Prevent Blindness, Inc. to D.J.Z., generous gifts from the Guerrieri Family Foundation and from Mr. and Mrs. Robert and Clarice Smith to D.J.Z., Foundation Fighting Blindness to D.J.Z., Thome Foundation to D.J.Z., Beckman Foundation to D.J.Z., NSF Graduate Research Fellowships DGE-0707427 to DRW and DGE-1232825 to YR; the Bloomberg~Kimmel Institute for Cancer Immunotherapy to JJG; the NIH (R21EY026148, R01EB022148, R01CA228133, and the Wilmer Core Grant P30 EY001765); and a Research to Prevent Blindness / Dr. H. James and Carole Free Catalyst Award for Innovative Research Approaches for Age-Related Macular Degeneration to JJG.

Author information

Authors and Affiliations

Authors

Contributions

Overall conceptualization, B.M., D.R.W., D.J.Z and J.J.G; Methodology and Investigation, B.M., D.R.W., S.S.R, M.P.S., C.B., and Y.R.; Resource Generation (plasmid DNA designing and production), K.J.W., (stem cell differentiation and maintenance), S.S.R.; Writing—Original Draft, B.M., D.R.W., C.B., D.J.Z and J.J.G; Writing—Review & Editing, B.M., D.R.W., C.B., D.J.Z and J.J.G.; Funding Acquisition, D.J.Z., J.J.G., S.S.R., D.R.W., and Y.R.; Supervision and Project Administration, D.J.Z and J.J.G.

Corresponding authors

Correspondence to Jordan J. Green or Donald J. Zack.

Ethics declarations

Conflict of Interest

DJZ is on the scientific advisory board of Spark Therapeutics, which is interested in developing optimized approaches for retinal gene delivery.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 11821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B., Wilson, D.R., Sripathi, S.R. et al. A Combinatorial Library of Biodegradable Polyesters Enables Non-viral Gene Delivery to Post-Mitotic Human Stem Cell-Derived Polarized RPE Monolayers. Regen. Eng. Transl. Med. 6, 273–285 (2020). https://doi.org/10.1007/s40883-019-00118-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00118-1

Keywords

Navigation