Skip to main content
Log in

Increased NF-κB Activity in Osteoprogenitor-Lineage Cells Impairs the Balance of Bone Versus Fat in the Marrow of Skeletally Mature Mice

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

“Senile osteoporosis” is defined as significant aging-associated bone loss and is accompanied by increased fat in the bone marrow. The proportion of adipocytes in the bone marrow is inversely correlated with bone formation and is associated with increased risk of fracture. NF-κB is a transcription factor that functions as a master regulator of inflammation and bone remodeling. NF-κB activity increases during aging; furthermore, constitutive activation of NF-κB significantly impairs skeletal development in neonatal mice. However, the effects of NF-κB activation using a skeletally mature animal model have not been examined. In the current study, an osteoprogenitor (OP)-specific, doxycycline-regulated NF-κB-activated transgenic mouse model (iNF-κB/OP) was generated to investigate the role of NF-κB in bone remodeling in skeletally mature mice. Reduced osteogenesis in the OP-lineage cells isolated from iNF-κB/OP mice was only observed in the absence of doxycycline in vitro. Bone mineral density in the metaphyseal regions of femurs and tibias was reduced in iNF-κB/OP mice. No significant differences in bone volume fraction and cortical bone thickness were observed. Osmium-stained bone marrow fat was increased in epiphyseal and metaphyseal areas in the tibias of iNF-κB/OP mice. These findings suggest that targeting NF-κB activity as a therapeutic strategy may improve bone healing and prevent aging-associated bone loss in aged patients.

Lay Summary

“Senile osteoporosis” denotes significant aging-associated bone loss from the axial and peripheral skeleton and is accompanied by increased fat in the bone marrow. This imbalance in osteogenesis and adipogenesis is associated with an increased incidence of fragility fractures of the spine, hip, knee, shoulder, and wrist. NF-κB is a key regulator of bone remodeling. Increased NF-κB activity was found in many organs during the natural aging process. Clarification of the specific effect of increased NF-κB activity on osteoprogenitors during aging will delineate novel therapeutic approaches to mitigate the adverse effects of chronic inflammation and suppressed bone formation in aging-associated osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol. 2002;55(9):693–8.

    Article  CAS  Google Scholar 

  2. Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98(6):2294–300. https://doi.org/10.1210/jc.2012-3949.

    Article  CAS  Google Scholar 

  3. Nguyen ND, Ahlborg HG, Center JR, Eisman JA, Nguyen TV. Residual lifetime risk of fractures in women and men. J Bone Miner Res. 2007;22(6):781–8. https://doi.org/10.1359/jbmr.070315.

    Article  Google Scholar 

  4. Wu JY, Scadden DT, Kronenberg HM. Role of the osteoblast lineage in the bone marrow hematopoietic niches. J Bone Miner Res. 2009;24(5):759–64. https://doi.org/10.1359/jbmr.090225.

    Article  Google Scholar 

  5. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  Google Scholar 

  6. Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY. Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev. 2007;21(24):3244–57. https://doi.org/10.1101/gad.1588507.

    Article  CAS  Google Scholar 

  7. Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD. NF-kappaB in aging and disease. Aging Dis. 2011;2(6):449–65.

    Google Scholar 

  8. Lin TH, Gibon E, Loi F, Pajarinen J, Cordova LA, Nabeshima A, et al. Decreased osteogenesis in mesenchymal stem cells derived from the aged mouse is associated with enhanced NF-kappaB activity. J Orthop Res. 2017;35(2):281–8. https://doi.org/10.1002/jor.23270.

    Article  CAS  Google Scholar 

  9. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med. 1997;3(11):1285–9.

    Article  CAS  Google Scholar 

  10. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med. 2009;15(6):682–9. https://doi.org/10.1038/nm.1954.

    Article  CAS  Google Scholar 

  11. Swarnkar G, Zhang K, Mbalaviele G, Long F, Abu-Amer Y. Constitutive activation of IKK2/NF-kappaB impairs osteogenesis and skeletal development. PLoS One. 2014;9(3):e91421. https://doi.org/10.1371/journal.pone.0091421.

    Article  CAS  Google Scholar 

  12. Di Iorgi N, Mo AO, Grimm K, Wren TA, Dorey F, Gilsanz V. Bone acquisition in healthy young females is reciprocally related to marrow adiposity. J Clin Endocrinol Metab. 2010;95(6):2977–82. https://doi.org/10.1210/jc.2009-2336.

    Article  CAS  Google Scholar 

  13. Moore SG, Dawson KL. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology. 1990;175(1):219–23. https://doi.org/10.1148/radiology.175.1.2315484.

    Article  CAS  Google Scholar 

  14. Choi SE, Hong SW, Yoon SO. Proposal of an appropriate decalcification method of bone marrow biopsy specimens in the era of expanding genetic molecular study. J Pathol Transl Med. 2015;49(3):236–42. https://doi.org/10.4132/jptm.2015.03.16.

    Article  Google Scholar 

  15. Lin TH, Sato T, Barcay KR, Waters H, Loi F, Zhang R, et al. NF-kappaB decoy oligodeoxynucleotide enhanced osteogenesis in mesenchymal stem cells exposed to polyethylene particle. Tissue Eng A. 2014;21:875–83. https://doi.org/10.1089/ten.TEA.2014.0144.

    Article  Google Scholar 

  16. Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, et al. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone. 2014;64:39–46. https://doi.org/10.1016/j.bone.2014.03.044.

    Article  Google Scholar 

  17. Bermeo S, Gunaratnam K, Duque G. Fat and bone interactions. Curr Osteoporos Rep. 2014;12(2):235–42. https://doi.org/10.1007/s11914-014-0199-y.

    Article  Google Scholar 

  18. Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, et al. NF-kappaB inhibits osteogenic differentiation of mesenchymal stem cells by promoting beta-catenin degradation. Proc Natl Acad Sci U S A. 2013;110(23):9469–74. https://doi.org/10.1073/pnas.1300532110.

    Article  Google Scholar 

  19. Nuttall ME, Shah F, Singh V, Thomas-Porch C, Frazier T, Gimble JM. Adipocytes and the regulation of bone remodeling: a balancing act. Calcif Tissue Int. 2014;94(1):78–87. https://doi.org/10.1007/s00223-013-9807-6.

    Article  CAS  Google Scholar 

  20. Schilling T, Kuffner R, Klein-Hitpass L, Zimmer R, Jakob F, Schutze N. Microarray analyses of transdifferentiated mesenchymal stem cells. J Cell Biochem. 2008;103(2):413–33. https://doi.org/10.1002/jcb.21415.

    Article  CAS  Google Scholar 

  21. Schilling T, Noth U, Klein-Hitpass L, Jakob F, Schutze N. Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Mol Cell Endocrinol. 2007;271(1–2):1–17. https://doi.org/10.1016/j.mce.2007.03.004.

    Article  CAS  Google Scholar 

  22. Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18(9):980–2. https://doi.org/10.1096/fj.03-1100fje.

    Article  CAS  Google Scholar 

  23. Sinha P, Aarnisalo P, Chubb R, Ono N, Fulzele K, Selig M, et al. Loss of Gs alpha early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors. J Bone Miner Res. 2014;29(11):2414–26. https://doi.org/10.1002/jbmr.2270.

    Article  CAS  Google Scholar 

  24. Gao B, Huang Q, Lin YS, Wei BY, Guo YS, Sun Z, et al. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway. PLoS One. 2014;9(6):e99137. https://doi.org/10.1371/journal.pone.0099137.

    Article  CAS  Google Scholar 

  25. Lin TH, Sato T, Barcay KR, Waters H, Loi F, Zhang R, et al. NF-kappaB decoy oligodeoxynucleotide enhanced osteogenesis in mesenchymal stem cells exposed to polyethylene particle. Tissue Eng A. 2015;21(5–6):875–83. https://doi.org/10.1089/ten.TEA.2014.0144.

    Article  CAS  Google Scholar 

  26. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88. https://doi.org/10.7150/ijbs.2929.

    Article  CAS  Google Scholar 

  27. Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest. 1997;100(11):2697–713. https://doi.org/10.1172/JCI119815.

    Article  CAS  Google Scholar 

  28. Torti FM, Torti SV, Larrick JW, Ringold GM. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J Cell Biol. 1989;108(3):1105–13.

    Article  CAS  Google Scholar 

  29. Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133(16):3231–44. https://doi.org/10.1242/dev.02480.

    Article  CAS  Google Scholar 

  30. Tella SH, Gallagher JC. Biological agents in management of osteoporosis. Eur J Clin Pharmacol. 2014;70(11):1291–301. https://doi.org/10.1007/s00228-014-1735-5.

    Article  CAS  Google Scholar 

  31. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–33. https://doi.org/10.1001/jama.2016.11136.

    Article  CAS  Google Scholar 

  32. Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99(Pt A:12–27. https://doi.org/10.1016/j.addr.2015.10.005.

    Article  CAS  Google Scholar 

  33. Dang L, Liu J, Li F, Wang L, Li D, Guo B, et al. Targeted delivery systems for molecular therapy in skeletal disorders. Int J Mol Sci. 2016;17(3):428. https://doi.org/10.3390/ijms17030428.

    Article  CAS  Google Scholar 

  34. Zhang G, Guo B, Wu H, Tang T, Zhang BT, Zheng L, et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat Med. 2012;18(2):307–14. https://doi.org/10.1038/nm.2617.

    Article  CAS  Google Scholar 

  35. Liang C, Guo B, Wu H, Shao N, Li D, Liu J, et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med. 2015;21(3):288–94. https://doi.org/10.1038/nm.3791.

    Article  CAS  Google Scholar 

  36. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest. 2015;125(4):1509–22. https://doi.org/10.1172/JCI77716.

    Article  Google Scholar 

  37. Simon AM, Manigrasso MB, O'Connor JP. Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res. 2002;17(6):963–76. https://doi.org/10.1359/jbmr.2002.17.6.963.

    Article  CAS  Google Scholar 

  38. Liu Y, Strecker S, Wang L, Kronenberg MS, Wang W, Rowe DW, et al. Osterix-Cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLoS One. 2013;8(8):e71318. https://doi.org/10.1371/journal.pone.0071318.

    Article  CAS  Google Scholar 

  39. Powles TJ, Hickish T, Kanis JA, Tidy A, Ashley S. Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol. 1996;14(1):78–84. https://doi.org/10.1200/JCO.1996.14.1.78.

    Article  CAS  Google Scholar 

  40. Bartelt A, Koehne T, Todter K, Reimer R, Muller B, Behler-Janbeck F, et al. Quantification of bone fatty acid metabolism and its regulation by adipocyte lipoprotein lipase. Int J Mol Sci. 2017;18(6). https://doi.org/10.3390/ijms18061264.

  41. Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 2011;13(1):11–22. https://doi.org/10.1016/j.cmet.2010.12.008.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by NIH grant 1R01AR063717 and the Ellenburg Chair in Surgery at Stanford University. J.P. was supported by a grant from the Jane and Aatos Erkko Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Goodman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Pajarinen, J., Kohno, Y. et al. Increased NF-κB Activity in Osteoprogenitor-Lineage Cells Impairs the Balance of Bone Versus Fat in the Marrow of Skeletally Mature Mice. Regen. Eng. Transl. Med. 6, 69–77 (2020). https://doi.org/10.1007/s40883-019-00112-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00112-7

Keywords

Navigation