Production and Characterization of Recombinant Collagen-Binding Resilin Nanocomposite for Regenerative Medicine Applications

Abstract

Development of mechanically stable and multifunctional biomaterials for sensing, repair, and regeneration applications is of great importance. Herein, we investigate the potential of recombinant resilin-like (Res) nanocomposite elastomer as a template biomaterial for regenerative devices such as adhesive bandages or films, electrospun fibers, screws, sutures, and drug delivery vehicles. Exon I (Rec1) from the native resilin gene of Drosophila (CG15920) was fused with collagen-binding domain (ColBD) from Clostridium histolyticum and expressed in Komagataella pastoris (formerly Pichia pastoris). The 100% binding of Resilin-ColBD (Res-ColBD) to collagen I was shown at a 1:1 ratio by mass. Atomic force microscopy results in force mode show a bimodal profile for the ColBD-binding interactions. Moreover, based on the force-volume map, Res-ColBD adhesion to collagen was statistically significantly higher than resilin without ColBD.

Lay Summary

Designing advanced biomaterials that will not only withstand the repetitive mechanical loading and flexibility of tissues but also retain biochemical and biophysical interactions remains challenging. The combination of physical, biological, and chemical cues is vital for disease regulation, healing, and ultimately complete regeneration of functional human tissues. Resilin is a super elastic and highly resilient natural protein with good biocompatibility but lacks specific biological and chemical cues. Therefore, resilin decorated with collagen I–binding domain is proposed as a functional nanocomposite template biomaterial. Collagen I is an ideal binding target, as it is the most abundant structural protein found in human body including scars that affect unwanted adhesion.

Future Work

Musculoskeletal-related injuries and disorders are the second largest cause of disabilities worldwide. Significant pain, neurological discomfort, limited mobility, and substantial financial burden are associated with these disorders. Thus, biocompatible materials comprised of resilin with collagen-binding domain, such as films adhesive bandages (films, fiber matts, or hydrogels), sutures, screws and rods, three-dimensional scaffolds, and delivery vehicles, will be designed and evaluated for multiple musculoskeletal-related regeneration applications.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jin H-E, Jang J, Chung J, Lee HJ, Wang E, Lee S-W, et al. Biomimetic self-templated hierarchical structures of collagen-like peptide amphiphiles. Nano Lett. 2015;15:7138–45. https://doi.org/10.1021/acs.nanolett.5b03313.

    Article  Google Scholar 

  2. 2.

    Woolfson DN, Mahmoud ZN. More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. Chem Soc Rev. 2010;39:3464–79. https://doi.org/10.1039/c0cs00032a.

    CAS  Article  Google Scholar 

  3. 3.

    Chen F-M, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168. https://doi.org/10.1016/j.progpolymsci.2015.02.004.

    CAS  Article  Google Scholar 

  4. 4.

    Sutherland TD, Rapson TD, Huson MG, Church JS, Recombinant structural proteins and their use in future materials, in: Springer, Cham, 2017: pp. 491–526. https://doi.org/10.1007/978-3-319-49674-0_15.

  5. 5.

    Li L, Charati MB, Kiick KL. Elastomeric polypeptide-based biomaterials. Polym Chem. 2010;1:1160–70. https://doi.org/10.1039/b9py00346k.

    CAS  Article  Google Scholar 

  6. 6.

    DiMarco RL, Heilshorn SC. Multifunctional materials through modular protein engineering. Adv Mater. 2012;24:3923–40. https://doi.org/10.1002/adma.201200051.

    CAS  Article  Google Scholar 

  7. 7.

    Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant technology in the development of materials and systems for soft-tissue repair. Adv Healthc Mater. 2015;4:2423–55. https://doi.org/10.1002/adhm.201500152.

    CAS  Article  Google Scholar 

  8. 8.

    Andersen SO. Studies on resilin-like gene products in insects. Insect Biochem Mol Biol. 2010;40:541–51. https://doi.org/10.1016/j.ibmb.2010.05.002.

    CAS  Article  Google Scholar 

  9. 9.

    Charati MB, Ifkovits JL, Burdick JA, Linhardt JG, Kiick KL. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter. 2009;5:3412–6. https://doi.org/10.1039/b910980c.

    CAS  Article  Google Scholar 

  10. 10.

    Li L, Kiick KL. Resilin-based materials for biomedical applications. ACS Macro Lett. 2013;2:635–40. https://doi.org/10.1021/mz4002194.

    CAS  Article  Google Scholar 

  11. 11.

    Michels J, Appel E, Gorb SN. Functional diversity of resilin in Arthropoda. Beilstein J Nanotechnol. 2016;7:1241–59. https://doi.org/10.3762/bjnano.7.115.

    CAS  Article  Google Scholar 

  12. 12.

    Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature. 2005;437:999–1002. https://doi.org/10.1038/nature04085.

    CAS  Article  Google Scholar 

  13. 13.

    Ardell DH, Andersen SO. Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochem Mol Biol. 2001;31:965–70. https://doi.org/10.1016/S0965-1748(01)00044-3.

    CAS  Article  Google Scholar 

  14. 14.

    Qin G, Lapidot S, Numata K, Hu X, Meirovitch S, Dekel M, et al. Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules. 2009;10:3227–34. https://doi.org/10.1021/bm900735g.

    CAS  Article  Google Scholar 

  15. 15.

    Qin G, Rivkin A, Lapidot S, Hu X, Preis I, Arinus SB, et al. Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials. 2011;32:9231–43. https://doi.org/10.1016/j.biomaterials.2011.06.010.

    CAS  Article  Google Scholar 

  16. 16.

    Li L, Teller S, Clifton RJ, Jia X, Kiick KL. Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules. 2011;12:2302–10. https://doi.org/10.1021/bm200373p.

    CAS  Article  Google Scholar 

  17. 17.

    Qin G, Hu X, Cebe P, Kaplan DL. Mechanism of resilin elasticity. Nat Commun. 2012;3:1003. https://doi.org/10.1038/ncomms2004.

    CAS  Article  Google Scholar 

  18. 18.

    McGann CL, Levenson EA, Kiick KL. Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromolecules. 2013;214:203–13. https://doi.org/10.1002/macp.201200412.

    CAS  Article  Google Scholar 

  19. 19.

    Li L, Mahara A, Tong Z, Levenson EA, McGann CL, Jia X, et al. Recombinant resilin-based bioelastomers for regenerative medicine applications. Adv Healthc Mater. 2016;5:266–75. https://doi.org/10.1002/adhm.201500411.

    CAS  Article  Google Scholar 

  20. 20.

    Li L, Tong Z, Jia X, Kiick KL. Resilin-like polypeptide hydrogels engineered for versatile biological function. Soft Matter. 2013;9:665–73. https://doi.org/10.1039/C2SM26812D.

    CAS  Article  Google Scholar 

  21. 21.

    Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL. Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A. 2018;106:2229–42. https://doi.org/10.1002/jbm.a.36418.

    CAS  Article  Google Scholar 

  22. 22.

    Wilson JJ, Matsushita O, Okabe A, Sakon J. A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation. EMBO J. 2003;22:1743–52. https://doi.org/10.1093/emboj/cdg172.

    CAS  Article  Google Scholar 

  23. 23.

    A-Hassan E, Heinz WF, Antonik MD, D’Costa NP, Nageswaran S, Schoenenberger C-A, et al. Relative microelastic mapping of living cells by atomic force microscopy. Biophys J. 1998;74:1564–78. https://doi.org/10.1016/S0006-3495(98)77868-3.

    CAS  Article  Google Scholar 

  24. 24.

    Rotsch C, Braet F, Wisse E, Radmacher M. AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int. 1997;21:685–96. https://doi.org/10.1006/cbir.1997.0213.

    CAS  Article  Google Scholar 

  25. 25.

    Sorci M, Dassa B, Liu H, Anand G, Dutta AK, Pietrokovski S, et al. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins. Anal Chem. 2013;85:6080–8. https://doi.org/10.1021/ac400949t.

    CAS  Article  Google Scholar 

  26. 26.

    Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395:829–37. https://doi.org/10.1007/s00216-009-3019-y.

    CAS  Article  Google Scholar 

  27. 27.

    Júnior ZSS, Botta SB, Ana PA, França CM, Fernandes KPS, Mesquita-Ferrari RA, et al. Effect of papain-based gel on type I collagen - spectroscopy applied for microstructural analysis. Sci Rep. 2015;5:11448. https://doi.org/10.1038/srep11448.

    CAS  Article  Google Scholar 

  28. 28.

    Rizk MA, Mostafa NY. Extraction and characterization of collagen from buffalo skin for biomedical applications. Orient J Chem. 2016;32:1601–9. https://doi.org/10.13005/ojc/320336.

    CAS  Article  Google Scholar 

  29. 29.

    Rivkin A, Abitbol T, Nevo Y, Verker R, Lapidot S, Komarov A, et al. Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals. Ind Biotechnol. 2015;11:44–58.

    CAS  Article  Google Scholar 

  30. 30.

    Herman-Bausier P, Dufrêne YF. Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF. Mol Microbiol. 2016;99:611–21. https://doi.org/10.1111/mmi.13254.

    CAS  Article  Google Scholar 

  31. 31.

    Huang X, Li X, Wang Q, Dai J, Hou J, Chen L. Single-molecule level binding force between collagen and collagen binding domain-growth factor conjugates. Biomaterials. 2013;34:6139–46. https://doi.org/10.1016/J.BIOMATERIALS.2013.04.057.

    CAS  Article  Google Scholar 

  32. 32.

    Bustamante C, Marko JF, Siggia ED, Smith S. Entropic elasticity of λ-phage DNA. Science. 1994;265:1599–600.

    CAS  Article  Google Scholar 

  33. 33.

    Lim RYH, Köser J, Huang N, Schwarz-Herion K, Aebi U. Nanomechanical interactions of phenylalanine–glycine nucleoporins studied by single molecule force–volume spectroscopy. J Struct Biol. 2007;159:277–89.

    CAS  Article  Google Scholar 

  34. 34.

    O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95. https://doi.org/10.1016/S1369-7021(11)70058-X.

    CAS  Article  Google Scholar 

  35. 35.

    Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1–19. https://doi.org/10.1155/2011/290602.

    Article  Google Scholar 

  36. 36.

    Brennan-Olsen SL, Cook S, Leech MT, Bowe SJ, Kowal P, Naidoo N, et al. Prevalence of arthritis according to age, sex and socioeconomic status in six low and middle income countries: analysis of data from the World Health Organization study on global AGEing and adult health (SAGE) Wave 1. BMC Musculoskelet Disord. 2017;18:271. https://doi.org/10.1186/s12891-017-1624-z.

    Article  Google Scholar 

  37. 37.

    Briggs AM, Cross MJ, Hoy DG, Sànchez-Riera L, Blyth FM, Woolf AD, et al. Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist. 2016;56:S243–55. https://doi.org/10.1093/geront/gnw002.

    Article  Google Scholar 

  38. 38.

    Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral disk degeneration and repair. Neurosurgery. 2017;80:S46–54. https://doi.org/10.1093/neuros/nyw078.

    Article  Google Scholar 

  39. 39.

    K.R. Fingar, C. Stocks, A.J. Weiss, C.A. Steiner, Most frequent operating room procedures performed in U.S. hospitals, 2003-2012 #186, (n.d.). https://www.hcup-us.ahrq.gov/reports/statbriefs/sb186-Operating-Room-Procedures-United-States-2012.jsp.

  40. 40.

    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6 http://www.ncbi.nlm.nih.gov/pubmed/8493529 (accessed October 29, 2018).

    CAS  Article  Google Scholar 

  41. 41.

    Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015;4:1268–85. https://doi.org/10.1002/adhm.201400760.

    CAS  Article  Google Scholar 

  42. 42.

    Sebastine IM, Williams DJ. Current developments in tissue engineering of nucleus pulposus for the treatment of intervertebral disc degeneration. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2007;2007:6401–6. https://doi.org/10.1109/IEMBS.2007.4353821.

    Article  Google Scholar 

  43. 43.

    Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA. Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol Histopathol. 2007;22:1033–41. https://doi.org/10.14670/HH-22.1033.

    CAS  Article  Google Scholar 

  44. 44.

    Hudson KD, Alimi M, Grunert P, Härtl R, Bonassar LJ. Recent advances in biological therapies for disc degeneration: tissue engineering of the annulus fibrosus, nucleus pulposus and whole intervertebral discs. Curr Opin Biotechnol. 2013;24:872–9. https://doi.org/10.1016/J.COPBIO.2013.04.012.

    CAS  Article  Google Scholar 

  45. 45.

    Washington MA, Balmert SC, Fedorchak MV, Little SR, Watkins SC, Meyer TY. Monomer sequence in PLGA microparticles: effects on acidic microclimates and in vivo inflammatory response. Acta Biomater. 2018;65:259–71. https://doi.org/10.1016/J.ACTBIO.2017.10.043.

    CAS  Article  Google Scholar 

  46. 46.

    Agrawal CM, Athanasiou KA, Technique to control pH in vicinity of biodegrading PLA-PGA implants, John Wiley & Sons, 1997. https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO;2-U.

  47. 47.

    Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 2013;13:243–62. https://doi.org/10.1016/J.SPINEE.2012.12.002.

    Article  Google Scholar 

  48. 48.

    Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301–17. https://doi.org/10.1007/s00253-014-5732-5.

    CAS  Article  Google Scholar 

  49. 49.

    Leitinger B, Hohenester E. Mammalian collagen receptors. Matrix Biol. 2007;26:146–55. https://doi.org/10.1016/J.MATBIO.2006.10.007.

    CAS  Article  Google Scholar 

  50. 50.

    Lamontagne C-A, Grandbois M. PKC-induced stiffening of hyaluronan/CD44 linkage; local force measurements on glioma cells. Exp Cell Res. 2008;314:227–36.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the funding from the National Institutes of Health grant no. AR064157 Supplement to RJL. The AFM force measurements were supported by a US DOE grant (DOE Grant No. DE-FG02-09ER16005) to GB.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert J. Linhardt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikael, P.E., Udangawa, R., Sorci, M. et al. Production and Characterization of Recombinant Collagen-Binding Resilin Nanocomposite for Regenerative Medicine Applications. Regen. Eng. Transl. Med. 5, 362–372 (2019). https://doi.org/10.1007/s40883-019-00092-8

Download citation

Keywords

  • Resilin
  • Collagen-binding domain
  • Stretchable nanocomposite
  • Functional biomaterials
  • Regenerative medicine