Musculoskeletal Tissue Regeneration: the Role of the Stem Cells

  • Ganesh Narayanan
  • Maumita Bhattacharjee
  • Lakshmi S. Nair
  • Cato T. LaurencinEmail author


Ligament, cartilage, and meniscus injuries often have poor healing due to low vascularity and low proliferative abilities of the resident cells. Drawbacks with conventional treatment methodologies have prompted interest in a new approach we term “Regenerative Engineering” to regenerate orthopaedic tissues. The work of cells is of central importance in the Regenerative Engineering paradigm. In this regard, both differentiated cells and stem cells such as bone marrow stromal cells have been studied as sources for orthopaedic tissue regeneration. In addition, other stem cells such as those derived from peripheral blood, synovium, adipose, and other extraembryonic sources have been isolated and characterized and subsequently investigated for regenerating various orthopaedic tissues. In this review, recent developments in the stem cell-mediated regeneration of ligament, cartilage, and menisci are discussed.

Lay Summary

Most orthopaedic tissue ailments originate from trauma or degenerative diseases. Commonly utilized strategies in clinical settings have shortcomings such as poor or incomplete healing. By converging advanced materials science with stem cells, growth factors/small molecules, and developmental biology, regenerative engineering is expected to provide strategies for orthopaedic tissue regeneration. In this review, we discuss various cell sources that have been isolated, characterized, and studied for regenerating orthopaedic tissues. Some of the underlying molecular mechanisms involved in those cells are also discussed. In addition, various approaches based on those cell sources for regenerating ligament, cartilage, and meniscus tissues are reported. In the future, cell-based approaches discussed in this review need to be combined with other salient aspects of regenerative engineering to facilitate activation of multiple signaling pathways required for tissue regeneration. Via such a holistic approach, we anticipate regeneration of ligaments, cartilage, and meniscus with features similar to that of native tissue.


Ligaments Cartilage Meniscus Autografts Allografts Biomaterials Scaffolds Fibroblasts Stem cells 



The authors gratefully acknowledge funding from the Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, NIH R01AR063698, and NIH DP1 AR068147.


  1. 1.
    United States Bone and Joint Initiative: the burden of musculoskeletal diseases in the United States (BMUS). Third edition, Rosemont, IL 2014, 2016.
  2. 2.
    Mather RC, Hettrich CM, Dunn WR, Cole BJ, Bach BR Jr, Huston LJ, et al. Cost-effectiveness analysis of early reconstruction versus rehabilitation and delayed reconstruction for anterior cruciate ligament tears. Am J Sports Med. 2014;42:1583–91.Google Scholar
  3. 3.
    Maffulli N, Longo UG, Campi S, Denaro V. Meniscal tears. Open Access Journal of Sports Medicine. 2010;1:45–54.Google Scholar
  4. 4.
    Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016;11:19.Google Scholar
  5. 5.
    Stringham DR, Pelmas CJ, Burks RT, Newman AP, Marcus RL. Comparison of anterior cruciate ligament reconstructions using patellar tendon autograft or allograft. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 1996;12:414–21.Google Scholar
  6. 6.
    Gorschewsky O, Klakow A, Pütz A, Mahn H, Neumann W. Clinical comparison of the autologous quadriceps tendon (BQT) and the autologous patella tendon (BPTB) for the reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2007;15:1284–92.Google Scholar
  7. 7.
    Eriksson K, Anderberg P, Hamberg P, Olerud P, Wredmark T. There are differences in early morbidity after ACL reconstruction when comparing patellar tendon and semitendinosus tendon graft. Scand J Med Sci Sports. 2001;11:170–7.Google Scholar
  8. 8.
    Ejerhed L, Kartus J, Sernert N, Köhler K, Karlsson J. Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? Am J Sports Med. 2003;31:19–25.Google Scholar
  9. 9.
    Sun K, Tian S-q, Zhang J-h, Xia C-s, Zhang C-l, Yu T-b. ACL reconstruction with BPTB autograft and irradiated fresh frozen allograft. Journal of Zhejiang University SCIENCE B 2009;10:306–316.Google Scholar
  10. 10.
    Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, Solheim E, et al. Autologous chondrocyte implantation compared with microfracture in the knee. The Journal of Bone & Joint Surgery. 2004;86:455.Google Scholar
  11. 11.
    Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P, et al. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee. Am J Sports Med. 2009;37:42–55.Google Scholar
  12. 12.
    Tohyama H, Yasuda K, Minami A, Majima T, Iwasaki N, Muneta T, et al. Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan. J Orthop Sci. 2009;14:579–88.Google Scholar
  13. 13.
    D’Anchise R, Manta N, Prospero E, Bevilacqua C, Gigante A. Autologous implantation of chondrocytes on a solid collagen scaffold: clinical and histological outcomes after two years of follow-up. Journal of Orthopaedics andTraumatology. 2005;6:36–43.Google Scholar
  14. 14.
    Zak L, Albrecht C, Wondrasch B, Widhalm H, Vekszler G, Trattnig S, et al. Results 2 years after matrix-associated autologous chondrocyte transplantation using the Novocart 3D scaffold. Am J Sports Med. 2014;42:1618–27.Google Scholar
  15. 15.
    Kreuz PC, Müller S, Ossendorf C, Kaps C, Erggelet C. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Research & Therapy. 2009;11:R33.Google Scholar
  16. 16.
    Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage. Am J Sports Med. 2014;42:1417–25.Google Scholar
  17. 17.
    Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Review of Medical Devices. 2006;3:49–57.Google Scholar
  18. 18.
    Kwansa AL, Empson YM, Ekwueme EC, Walters VI, Freeman JW, Laurencin CT. Novel matrix based anterior cruciate ligament (ACL) regeneration. Soft Matter. 2010;6:5016–25.Google Scholar
  19. 19.
    Fishman JA, Greenwald MA. Grossi PA. Essential Considerations in Donor Screening. Clinical Infectious Diseases: Transmission of infection with human allografts; 2012.Google Scholar
  20. 20.
    Galili U, LaTemple DC, Walgenbach AW, Stone KR. Porcine and bovine cartilage transplants in cynomolgus monkey. Transplantation. 1997;63:646–51.Google Scholar
  21. 21.
    Stone KR, Abdel-Motal UM, Walgenbach AW, Turek TJ, Galili U. Replacement of human anterior cruciate ligaments with pig ligaments: a model for anti-non-gal antibody response in long-term xenotransplantation. Transplantation. 2007;83:211–9.Google Scholar
  22. 22.
    Stone KR, Walgenbach AW, Turek TJ, Somers DL, Wicomb W, Galili U. Anterior cruciate ligament reconstruction with a porcine xenograft: a serologic, histologic, and biomechanical study in primates. Arthroscopy. 2007;23:411-9.e1.Google Scholar
  23. 23.
    Amini AR, Wallace JS, Nukavarapu SP. Short-term and long-term effects of orthopedic biodegradable implants. J Long-Term Eff Med Implants. 2011;21:93–122.Google Scholar
  24. 24.
    Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Advanced Healthcare Materials. 2015;4:1268–85.Google Scholar
  25. 25.
    Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49:832–64.Google Scholar
  26. 26.
    Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247–76.Google Scholar
  27. 27.
    Jiang T, Carbone EJ, Lo KWH, Laurencin CT. Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci. 2015;46:1–24.Google Scholar
  28. 28.
    Narayanan G, Gupta BS, Tonelli AE. Poly(ε-caprolactone) nanowebs functionalized with α- and γ-cyclodextrins. Biomacromolecules. 2014;15:4122–33.Google Scholar
  29. 29.
    Narayanan G, Gupta BS, Tonelli AE. Enhanced mechanical properties of poly (ε-caprolactone) nanofibers produced by the addition of non-stoichiometric inclusion complexes of poly (ε-caprolactone) and α-cyclodextrin. Polymer. 2015;76:321–30.Google Scholar
  30. 30.
    Narayanan G, Aguda R, Hartman M, Chung C-C, Boy R, Gupta BS, et al. Fabrication and characterization of poly(ε-caprolactone)/α-cyclodextrin pseudorotaxane nanofibers. Biomacromolecules. 2016;17:271–9.Google Scholar
  31. 31.
    Narayanan G, Ormond BR, Gupta BS, Tonelli AE. Efficient wound odor removal by β-cyclodextrin functionalized poly (ε-caprolactone) nanofibers. Journal of Applied Polymer Science. 2015.;132:DOI:  10.1002/app.42782.
  32. 32.
    Narayanan G, Chung C-C, Aguda R, Boy R, Hartman M, Mehraban N, et al. Correlation of the stoichiometries of poly(ε-caprolactone) and [small alpha]-cyclodextrin pseudorotaxanes with their solution rheology and the molecular orientation, crystallite size, and thermomechanical properties of their nanofibers. RSC Adv. 2016;6:111326–36.Google Scholar
  33. 33.
    Bhattacharjee M, Chameettachal S, Pahwa S, Ray AR, Ghosh S. Strategies for replicating anatomical cartilaginous tissue gradient in engineered intervertebral disc. ACS Appl Mater Interfaces. 2014;6:183–93.Google Scholar
  34. 34.
    Bhattacharjee M, Miot S, Gorecka A, Singha K, Loparic M, Dickinson S, et al. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering. Acta Biomater. 2012;8:3313–25.Google Scholar
  35. 35.
    Bhattacharjee M, Schultz-Thater E, Trella E, Miot S, Das S, Loparic M, et al. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials. 2013;34:8161–71.Google Scholar
  36. 36.
    Narayanan G, Tekbudak MY, Caydamli Y, Dong J, Krause WE. Accuracy of electrospun fiber diameters: the importance of sampling and person-to-person variation. Polym Test. 2017;61:240–8.Google Scholar
  37. 37.
    Lo KWH, Ulery BD, Deng M, Ashe KM, Laurencin CT. Current patents on osteoinductive molecules for bone tissue engineering. Recent Pat Biomed Eng. 2011;4:153–67.Google Scholar
  38. 38.
    Lo KWH, Kan HM, Ashe KM, Laurencin CT. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med. 2012;6:40–8.Google Scholar
  39. 39.
    Lo KWH, Ashe KM, Kan HM, Laurencin CT. The role of small molecules in musculoskeletal regeneration. Regen Med. 2012;7:535–49.Google Scholar
  40. 40.
    Lo KWH, Ulery BD, Ashe KM, Laurencin CT. Studies of bone morphogenetic protein-based surgical repair. Adv Drug Deliv Rev. 2012;64:1277–91.Google Scholar
  41. 41.
    Ficklscherer A, Serr M, Loitsch T, Niethammer TR, Lahner M, Pietschmann MF, et al. The influence of different footprint preparation techniques on tissue regeneration in rotator cuff repair in an animal model. Arch Med Sci. 2016;13:481–8.Google Scholar
  42. 42.
    Lo KWH, Kan HM, Gagnon KA, Laurencin CT. One-day treatment of small molecule 8-bromo-cyclic AMP analogue induces cell-based VEGF production for in vitro angiogenesis and osteoblastic differentiation. J Tissue Eng Regen Med. 2016;10:867–75.Google Scholar
  43. 43.
    Lo KWH, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol. 2014;32:74–81.Google Scholar
  44. 44.
    Cushnie EK, Ulery BD, Nelson SJ, Deng M, Sethuraman S, Doty SB, et al. Simple signaling molecules for inductive bone regenerative engineering. PLoS One. 2014;9:e101627.Google Scholar
  45. 45.
    Laurencin CT, Ashe KM, Henry N, Kan HM, Lo KWH. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discov Today. 2014;19:794–800.Google Scholar
  46. 46.
    Lo KWH, Ulery BD, Kan HM, Ashe KM, Laurencin CT. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. J Tissue Eng Regen Med. 2014;8:728–36.Google Scholar
  47. 47.
    Carbone EJ, Rajpura K, Jiang T, Laurencin CT, Lo KW-H. Regulation of bone regeneration with approved small molecule compounds 2014.Google Scholar
  48. 48.
    Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, et al. Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 2006;12:3265–83.Google Scholar
  49. 49.
    Laurencin CT, Nair LS. Regenerative engineering: approaches to limb regeneration and other grand challenges. Regenerative Engineering and Translational Medicine. 2015;1:1–3.Google Scholar
  50. 50.
    Ingber DE, Levin M. What lies at the interface of regenerative medicine and developmental biology? Development. 2007;134:2541–7.Google Scholar
  51. 51.
    McCusker C, Lehrberg J, Gardiner D. Position-specific induction of ectopic limbs in non-regenerating blastemas on axolotl forelimbs. Regeneration. 2014;1:27–34.Google Scholar
  52. 52.
    McCusker C, Bryant SV, Gardiner DM. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration. 2015;2:54–71.Google Scholar
  53. 53.
    Lehrberg J, Gardiner DM. Regulation of axolotl (Ambystoma mexicanum) limb blastema cell proliferation by nerves and BMP2 in organotypic slice culture. PLoS One. 2015;10:e0123186.Google Scholar
  54. 54.
    Laurencin CT, Nair LS. The quest toward limb regeneration: a regenerative engineering approach. Regenerative Biomaterials. 2016;3:123–5.Google Scholar
  55. 55.
    Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363–408.Google Scholar
  56. 56.
    Bahney C, Miclau T. Therapeutic potential of stem cells in orthopedics. Indian Journal of Orthopaedics. 2012;46:4–9.Google Scholar
  57. 57.
    Kornblum HI. Introduction to neural stem cells. Stroke. 2007;38:810–6.Google Scholar
  58. 58.
    Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 1999;96:737–49.Google Scholar
  59. 59.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.Google Scholar
  60. 60.
    Alison MR. Liver stem cells. Stem Cell Rev. 2005;1:253–60.Google Scholar
  61. 61.
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci. 2000;97:14720–5.Google Scholar
  62. 62.
    Amini AR, Laurencin CT, Nukavarapu SP. Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. J Orthop Res. 2012;30:1507–15.Google Scholar
  63. 63.
    Mangano C, Paino F, d'Aquino R, De Rosa A, Iezzi G, Piattelli A, et al. Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex. PLoS One. 2011;6:e18721.Google Scholar
  64. 64.
    In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, FHJ C, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548–9.Google Scholar
  65. 65.
    Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2:155–62.Google Scholar
  66. 66.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.Google Scholar
  67. 67.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.Google Scholar
  68. 68.
    Gertow K, Cedervall J, Unger C, Szöke K, Blennow E, Imreh MP, et al. Trisomy 12 in HESC leads to no selective in vivo growth advantage in teratomas, but induces an increased abundance of renal development. J Cell Biochem. 2007;100:1518–25.Google Scholar
  69. 69.
    Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology. 2003;42:162–5.Google Scholar
  70. 70.
    Eisenstein M. IPSCs: one cell to rule them all? Nat Meth. 2010;7:81–5.Google Scholar
  71. 71.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.Google Scholar
  72. 72.
    Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–55.Google Scholar
  73. 73.
    Guzzo RM, Scanlon V, Sanjay A, Xu R-H, Drissi H. Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential. Stem Cell Rev Rep. 2014;10:820–9.Google Scholar
  74. 74.
    Lietman SA. Induced pluripotent stem cells in cartilage repair. World Journal of Orthopedics. 2016;7:149–55.Google Scholar
  75. 75.
    Bilic J, Belmonte JCI. Concise review: induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells. 2012;30:33–41.Google Scholar
  76. 76.
    Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Mácia A, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28:1568–70.Google Scholar
  77. 77.
    Baker M. Why hES cells make teratomas. 2009.Google Scholar
  78. 78.
    Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2:198–210.Google Scholar
  79. 79.
    Herbort M, Tecklenburg K, Zantop T, Raschke MJ, Hoser C, Schulze M, et al. Single-bundle anterior cruciate ligament reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone–patellar tendon–bone graft configuration versus a round hamstring graft. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2013;29:1981–90.Google Scholar
  80. 80.
    Caplan AI. Are all adult stem cells the same? Regenerative Engineering and Translational Medicine. 2015;1:4–10.Google Scholar
  81. 81.
    Beane OS, Darling EM. Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng. 2012;40:2079–97.Google Scholar
  82. 82.
    Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology. 1966;16:381–90.Google Scholar
  83. 83.
    Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11:1198–211.Google Scholar
  84. 84.
    van Buul GM, Villafuertes E, Bos PK, Waarsing JH, Kops N, Narcisi R, et al. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthr Cartil. 2012;20:1186–96.Google Scholar
  85. 85.
    Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216–25.Google Scholar
  86. 86.
    Schmitt A, van Griensven M, Imhoff AB, Buchmann S. Application of stem cells in orthopedics. Stem Cells Int. 2012;2012:11.Google Scholar
  87. 87.
    Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014;6:552–70.Google Scholar
  88. 88.
    Boomsma RA, Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One. 2012;7:e35685.Google Scholar
  89. 89.
    Kasir R, Vernekar VN, Laurencin CT. Regenerative engineering of cartilage using adipose-derived stem cells. Regenerative Engineering and Translational Medicine. 2015;1:42–9.Google Scholar
  90. 90.
    Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.Google Scholar
  91. 91.
    Zheng Y-H, Xiong WEI, Su KAI, Kuang S-J, Zhang Z-G. Multilineage differentiation of human bone marrow mesenchymal stem cells in vitro and in vivo. Experimental and Therapeutic Medicine. 2013;5:1576–80.Google Scholar
  92. 92.
    Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 15:641–8.Google Scholar
  93. 93.
    Lv F-J, Tuan RS, Cheung KMC, Leung VYL. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–19.Google Scholar
  94. 94.
    Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7:259–64.Google Scholar
  95. 95.
    Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.Google Scholar
  96. 96.
    Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res. 2014;163:399–408.Google Scholar
  97. 97.
    Reinhardt M, Bader A, Giri S. Devices for stem cell isolation and delivery: current need for drug discovery and cell therapy. Expert Review of Medical Devices. 2015;12:353–64.Google Scholar
  98. 98.
    Körbling M, Burke P, Braine H, Elfenbein G, Santos G, Kaizer H. Successful engraftment of blood derived normal hemopoietic stem cells in chronic myelogenous leukemia. Exp Hematol. 1981;9:684–90.Google Scholar
  99. 99.
    Bensinger WI, Clift RA, Anasetti C, Appelbaum FA, Demirer T, Rowley S, et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Stem Cells. 1996;14:90–105.Google Scholar
  100. 100.
    Álvarez-Viejo M, Menéndez-Menéndez Y, Otero-Hernández J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World Journal of Stem Cells. 2015;7:470–6.Google Scholar
  101. 101.
    Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol. 2001;153:1133–40.Google Scholar
  102. 102.
    Jones E, McGonagle D. Human bone marrow mesenchymal stem cells in vivo. Rheumatology. 2008;47:126–31.Google Scholar
  103. 103.
    Fernandez M, Simon V, Herrera G, Cao C, Del Favero H, Minguell J. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant. 1997;20Google Scholar
  104. 104.
    Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research & Therapy. 2000;2:477.Google Scholar
  105. 105.
    Rodriguez-Fontan F, Piuzzi NS, Chahla J, Payne KA, LaPrade RF, Muschler GF, et al. Stem and progenitor cells for cartilage repair: source, safety, evidence, and efficacy, operative techniques in sports medicine. 2017;25:25–33.Google Scholar
  106. 106.
    Hopper N, Wardale J, Brooks R, Power J, Rushton N, Henson F. Peripheral blood mononuclear cells enhance cartilage repair in in vivo osteochondral defect model. PLoS One. 2015;10:e0133937.Google Scholar
  107. 107.
    Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005;23:1105–12.Google Scholar
  108. 108.
    Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, et al. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol. 2003;74:833–45.Google Scholar
  109. 109.
    Kuznetsov SA, Mankani MH, Leet AI, Ziran N, Gronthos S, Robey PG. Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells. 2007;25:1830–9.Google Scholar
  110. 110.
    Cesselli D, Beltrami AP, Rigo S, Bergamin N, D'Aurizio F, Verardo R, et al. Multipotent progenitor cells are present in human peripheral blood. Circ Res. 2009;104:1225–34.Google Scholar
  111. 111.
    Civriz Bozdag S, Bay M, Ayyıldız E, Topcuoglu P, Ilhan O. Older age and capacity of colony forming unit in autologous peripheral derived hematopoietic cells. Transfus Apher Sci. 2012;47:113–6.Google Scholar
  112. 112.
    de Sousa EB, Casado PL, Neto VM, Duarte MEL, Aguiar DP. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther. 2014;5:112.Google Scholar
  113. 113.
    Iwanaga T, Shikichi M, Kitamura H, Yanase H, Nozawa-Inoue K. Morphology and functional roles of synoviocytes in the joint. Arch Histol Cytol. 2000;63:17–31.Google Scholar
  114. 114.
    Blom AB, van Lent PLEM, Holthuysen AEM, van der Kraan PM, Roth J, van Rooijen N, et al. Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil. 2004;12:627–35.Google Scholar
  115. 115.
    Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D, et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis & Rheumatism. 2008;58:1731–40.Google Scholar
  116. 116.
    Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51:249–57.Google Scholar
  117. 117.
    Matsukura Y, Muneta T, Tsuji K, Koga H, Sekiya I. Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res. 2014;472:1357–64.Google Scholar
  118. 118.
    Lee DH, Sonn CH, Han SB, Oh Y, Lee KM, Lee SH. Synovial fluid CD34− CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthr Cartil. 2012;20:106–9.Google Scholar
  119. 119.
    Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis & Rheumatism. 2004;50:817–27.Google Scholar
  120. 120.
    Hoff P, Buttgereit F, Burmester G-R, Jakstadt M, Gaber T, Andreas K, et al. Osteoarthritis synovial fluid activates pro-inflammatory cytokines in primary human chondrocytes. Int Orthop. 2013;37:145–51.Google Scholar
  121. 121.
    Zoltan S, Gabriella S, Sandor S, Alisa EK. Chemokines in rheumatic diseases. Curr Drug Targets. 2006;7:91–102.Google Scholar
  122. 122.
    Röhner E, Matziolis G, Perka C, Füchtmeier B, Gaber T, Burmester G-R, et al. Inflammatory synovial fluid microenvironment drives primary human chondrocytes to actively take part in inflammatory joint diseases. Immunol Res. 2012;52:169–75.Google Scholar
  123. 123.
    Smith MD, Barg E, Weedon H, Papengelis V, Smeets T, Tak PP, et al. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis. 2003;62:303–7.Google Scholar
  124. 124.
    De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis & Rheumatism. 2001;44:1928–42.Google Scholar
  125. 125.
    Harvanová D, Tóthová T, Sarisský M, Amrichová J, Rosocha J. Isolation and characterization of synovial mesenchymal stem cells. Folia Biol. 2011;57:119.Google Scholar
  126. 126.
    HERMIDA-GÓMEZ T, FUENTES-BOQUETE I, GIMENO-LONGAS MJ, MUIÑOS-LÓPEZ E, DÍAZ-PRADO S, de TORO FJ, et al. Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes. J Rheumatol. 2011;38:339–49.Google Scholar
  127. 127.
    Arufe MC, De la Fuente A, Fuentes-Boquete I, De Toro FJ, Blanco FJ. Differentiation of synovial CD-105+ human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. J Cell Biochem. 2009;108:145–55.Google Scholar
  128. 128.
    Arufe MC, De la Fuente A, Fuentes I, de Toro FJ, Blanco FJ. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J Cell Biochem. 2010;111:834–45.Google Scholar
  129. 129.
    Krawetz RJ, Wu YE, Martin L, Rattner JB, Matyas JR, Hart DA. Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PLoS One. 2012;7:e43616.Google Scholar
  130. 130.
    Mak J, Jablonski CL, Leonard CA, Dunn JF, Raharjo E, Matyas JR, et al. Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model. Sci Rep. 2016;6:23076.Google Scholar
  131. 131.
    Zheng Y-L, Sun Y-P, Zhang H, Liu W-J, Jiang R, Li W-Y, et al. Mesenchymal stem cells obtained from synovial fluid mesenchymal stem cell-derived induced pluripotent stem cells on a Matrigel coating exhibited enhanced proliferation and differentiation potential. PLoS One. 2015;10:e0144226.Google Scholar
  132. 132.
    Tuan RS. Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis & Rheumatism. 2006;54:3075–8.Google Scholar
  133. 133.
    Jones BA, Pei M. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng B Rev. 2012;18:301–11.Google Scholar
  134. 134.
    Pei M, He F. Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation. J Cell Physiol. 2012;227:2163–74.Google Scholar
  135. 135.
    Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis & Rheumatism. 2005;52:2521–9.Google Scholar
  136. 136.
    Garcia J, Wright K, Roberts S, Kuiper JH, Mangham C, Richardson J, et al. Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: the influence of tissue source and inflammatory stimulus. Sci Rep. 2016;6:24295.Google Scholar
  137. 137.
    Sabapathy V, Sundaram B, Vm S, Mankuzhy P, Kumar S. Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One. 2014;9:e93726.Google Scholar
  138. 138.
    Kim D-W, Staples M, Shinozuka K, Pantcheva P, Kang S-D, Borlongan C. Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci. 2013;14:11692.Google Scholar
  139. 139.
    La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol. 2009;131:267–82.Google Scholar
  140. 140.
    Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.Google Scholar
  141. 141.
    Troyer DL, Weiss ML. Concise review: Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26:591–9.Google Scholar
  142. 142.
    Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.Google Scholar
  143. 143.
    Lee OK, Kuo TK, Chen W-M, Lee K-D, Hsieh S-L, Chen T-H. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–75.Google Scholar
  144. 144.
    McElreavey KD, Irvine AI, Ennis KT, McLean WHI. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochem Soc Trans. 1991;19:29S.Google Scholar
  145. 145.
    Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, Guo Y-J, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells. 2004;22:1330–7.Google Scholar
  146. 146.
    De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotech. 2007;25:100–6.Google Scholar
  147. 147.
    Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, et al. Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury. 2013;44:540–9.Google Scholar
  148. 148.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.Google Scholar
  149. 149.
    Davydova DA, Vorotelyak EA, Smirnova Y, Zinovieva RD, Romanov Y, Kabaeva NV, et al. Cell phenotypes in human amniotic fluid. Acta Nat. 2009;1:98–103.Google Scholar
  150. 150.
    Aicher WK, Bühring H-J, Hart M, Rolauffs B, Badke A, Klein G. Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells—potential and pitfalls. Adv Drug Deliv Rev. 2011;63:342–51.Google Scholar
  151. 151.
    Rozemuller H, Prins H-J, Naaijkens B, Staal J, Bühring H-J, Martens AC. Prospective isolation of mesenchymal stem cells from multiple mammalian species using cross-reacting anti-human monoclonal antibodies. Stem Cells Dev. 2010;19:1911–21.Google Scholar
  152. 152.
    Farias VA, Linares-Fernández JL, Peñalver JL, Payá Colmenero JA, Ferrón GO, Duran EL, et al. Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta. 2011;32:86–95.Google Scholar
  153. 153.
    Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second- trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19:1450–6.Google Scholar
  154. 154.
    Arnhold S, Gluer S, Hartmann K, Raabe O, Addicks K, Wenisch S, et al. Amniotic-fluid stem cells: growth dynamics and differentiation potential after a CD-117-based selection procedure. Stem Cells Int. 2011;2011Google Scholar
  155. 155.
    Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med. 2009;4:423–33.Google Scholar
  156. 156.
    Oliveira MS, Barreto-Filho JB. Placental-derived stem cells: culture, differentiation and challenges. World Journal of Stem Cells. 2015;7:769–75.Google Scholar
  157. 157.
    Pelekanos RA, Li J, Gongora M, Chandrakanthan V, Scown J, Suhaimi N, et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res. 2012;8:58–73.Google Scholar
  158. 158.
    Nazarov I, Lee JW, Soupene E, Etemad S, Knapik D, Green W, et al. Multipotent stromal stem cells from human placenta demonstrate high therapeutic potential. Stem Cells Transl Med. 2012;1:359–72.Google Scholar
  159. 159.
    Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells. 2006;24:781–92.Google Scholar
  160. 160.
    Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood. 2008;111:2631–5.Google Scholar
  161. 161.
    Talwadekar MD, Kale VP, Limaye LS. Placenta-derived mesenchymal stem cells possess better immunoregulatory properties compared to their cord-derived counterparts—a paired sample study. Sci Rep. 2015;5:15784.Google Scholar
  162. 162.
    Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103:1662–8.Google Scholar
  163. 163.
    Jin HJ, Kwon JH, Kim M, Bae YK, Choi SJ, Oh W, et al. Downregulation of melanoma cell adhesion molecule (MCAM/CD146) accelerates cellular senescence in human umbilical cord blood-derived mesenchymal stem cells. Stem Cells Transl Med. 2016;5:427–39.Google Scholar
  164. 164.
    Nekanti U, Mohanty L, Venugopal P, Balasubramanian S, Totey S, Ta M. Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res. 2010;5:244–54.Google Scholar
  165. 165.
    Chitteti BR, Kobayashi M, Cheng Y, Zhang H, Poteat BA, Broxmeyer HE, et al. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood. 2014;124:519–29.Google Scholar
  166. 166.
    Noort WA, Oerlemans MIFJ, Rozemuller H, Feyen D, Jaksani S, Stecher D, et al. Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. J Cell Mol Med. 2012;16:1827–39.Google Scholar
  167. 167.
    Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod (Oxf, Engl). 2004;19:1450–6.Google Scholar
  168. 168.
    Sun S, Guo Z, Xiao X, Liu B, Liu X, Tang P-H, et al. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells. 2003;21:527–35.Google Scholar
  169. 169.
    Petrigliano FA, McAllister DR, Wu BM. Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2006;22:441–51.Google Scholar
  170. 170.
    Lewis SL, Bucher L, Heitkemper MM, Harding MM, Kwong J, Roberts D. Medical-surgical nursing: assessment and management of clinical problems, Single volume. St. Louis: Elsevier Health Sciences; 2016.Google Scholar
  171. 171.
    Freeman JW, Woods MD, Laurencin CT. Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. J Biomech. 2007;40:2029–36.Google Scholar
  172. 172.
    Ferretti M, Levicoff EA, Macpherson TA, Moreland MS, Cohen M, Fu FH. The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2007;23:278–83.Google Scholar
  173. 173.
    Leong NL, Petrigliano FA, McAllister DR. Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A. 2014;102:1614–24.Google Scholar
  174. 174.
    Frank C, Woo SL-Y, Amiel D, Harwood F, Gomez M, Akeson W. Medial collateral ligament healing. Am J Sports Med. 1983;11:379–89.Google Scholar
  175. 175.
    Keene GCR, Bickerstaff D, Rae PJ, Paterson RS. The natural history of meniscal tears in anterior cruciate ligament insufficiency. Am J Sports Med. 1993;21:672–9.Google Scholar
  176. 176.
    Doroski DM, Brink KS, Temenoff JS. Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials. 2007;28:187–202.Google Scholar
  177. 177.
    Arnoczky SP. Anatomy of the anterior cruciate ligament. Clin Orthop Relat Res. 1983;172:19–25.Google Scholar
  178. 178.
    Laurencin CT, Ambrosio A, Borden M, Cooper J Jr. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999;1:19–46.Google Scholar
  179. 179.
    Petersen W, Zantop T. Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res. 2007;454:35–47.Google Scholar
  180. 180.
    Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res. 1995;29:1363–71.Google Scholar
  181. 181.
    Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res. 1998;16:414–20.Google Scholar
  182. 182.
    Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005;26:1523–32.Google Scholar
  183. 183.
    Lu HH, Cooper JA Jr, Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials. 2005;26:4805–16.Google Scholar
  184. 184.
    Laurencin CT, Freeman JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials. 2005;26:7530–6.Google Scholar
  185. 185.
    Freeman JW, Woods MD, Cromer DA, Ekwueme EC, Andric T, Atiemo EA, et al. Evaluation of a hydrogel–fiber composite for ACL tissue engineering. J Biomech. 2011;44:694–9.Google Scholar
  186. 186.
    Li W-J, Cooper JA Jr, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(α-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377–85.Google Scholar
  187. 187.
    Meaney Murray M, Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001;22:2393–402.Google Scholar
  188. 188.
    Majima T, Funakosi T, Iwasaki N, Yamane S-T, Harada K, Nonaka S, et al. Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J Orthop Sci. 2005;10:302–7.Google Scholar
  189. 189.
    Shao H-J, Chen CS, Lee Y-T, Wang J-H, Young T-H. The phenotypic responses of human anterior cruciate ligament cells cultured on poly(ϵ-caprolactone) and chitosan. J Biomed Mater Res A. 2010;93A:1297–305.Google Scholar
  190. 190.
    Majima T, Irie T, Sawaguchi N, Funakoshi T, Iwasaki N, Harada K, et al. Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering. Proc Inst Mech Eng H J Eng Med. 2007;221:537–46.Google Scholar
  191. 191.
    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002;23:4131–41.Google Scholar
  192. 192.
    Nau T, Teuschl A. Regeneration of the anterior cruciate ligament: current strategies in tissue engineering. World J Orthop. 2015;6:127–36.Google Scholar
  193. 193.
    Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng. 2006;12:775–8.Google Scholar
  194. 194.
    Cooper JA Jr, Bailey LO, Carter JN, Castiglioni CE, Kofron MD, Ko FK, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, Achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials. 2006;27:2747–54.Google Scholar
  195. 195.
    Kato S, Saito M, Funasaki H, Marumo K. Distinctive collagen maturation process in fibroblasts derived from rabbit anterior cruciate ligament, medial collateral ligament, and patellar tendon in vitro. Knee Surg Sports Traumatol Arthrosc. 2015;23:1384–92.Google Scholar
  196. 196.
    Ge Z, Goh JCH, Lee EH. Selection of cell source for ligament tissue engineering. Cell Transplant. 2005;14:573–83.Google Scholar
  197. 197.
    Cooper JA, Sahota JS, Gorum WJ, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci. 2007;104:3049–54.Google Scholar
  198. 198.
    Fan H, Liu H, Toh SL, Goh JCH. Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials. 2008;29:1017–27.Google Scholar
  199. 199.
    Fan H, Liu H, Toh SL, Goh JCH. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009;30:4967–77.Google Scholar
  200. 200.
    Mifune Y, Matsumoto T, Takayama K, Terada S, Sekiya N, Kuroda R, et al. Tendon graft revitalization using adult anterior cruciate ligament (ACL)-derived CD34+ cell sheets for ACL reconstruction. Biomaterials. 2013;34:5476–87.Google Scholar
  201. 201.
    Liu H, Wei X, Ding X, Li X, Zhou G, Li P, et al. Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds. J Biomed Mater Res A. 2015;103:115–25.Google Scholar
  202. 202.
    Zhang N, Dietrich MA, Lopez MJ. Canine intra-articular multipotent stromal cells (MSC) from adipose tissue have the highest in vitro expansion rates, multipotentiality, and MSC immunophenotypes. Vet Surg. 2013;42:137–46.Google Scholar
  203. 203.
    Proffen BL, Haslauer CM, Harris CE, Murray MM. Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate ACL fibroblast migration, proliferation, and collagen gene expression. Connect Tissue Res. 2013;54:14–21.Google Scholar
  204. 204.
    Ouyang HW, Goh JCH, Mo XM, Teoh SH, Lee EH. Characterization of anterior cruciate ligament cells and bone marrow stromal cells on various biodegradable polymeric films. Mater Sci Eng C. 2002;20:63–9.Google Scholar
  205. 205.
    Liu H, Fan H, Toh SL, Goh JCH. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials. 2008;29:1443–53.Google Scholar
  206. 206.
    Sahoo S, Ouyang H, Goh JC-H, Tay T, Toh S. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 2006;12:91–9.Google Scholar
  207. 207.
    Gantenbein B, Gadhari N, Chan SCW, Kohl S, Ahmad SS. Mesenchymal stem cells and collagen patches for anterior cruciate ligament repair. World Journal of Stem Cells. 2015;7:521–34.Google Scholar
  208. 208.
    Petrigliano FA, English CS, Barba D, Esmende S, Wu BM, Mcallister DR. The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering. Tissue Eng. 2007;13:2721–31.Google Scholar
  209. 209.
    Sahoo S, Toh SL, Goh JCH. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010;31:2990–8.Google Scholar
  210. 210.
    Subramony SD, Dargis BR, Castillo M, Azeloglu EU, Tracey MS, Su A, et al. The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials. 2013;34:1942–53.Google Scholar
  211. 211.
    Liu A, Xue G-H, Sun M, Shao H-F, Ma C-Y, Gao Q, et al. 3D printing surgical implants at the clinic: a experimental study on anterior cruciate ligament reconstruction. Sci Rep. 2016;6:21704.Google Scholar
  212. 212.
    Yilgor C, Yilgor Huri P, Huri G. Tissue engineering strategies in ligament regeneration. Stem Cells Int. 2012;2012:9.Google Scholar
  213. 213.
    Nau T, Teuschl A. Regeneration of the anterior cruciate ligament: current strategies in tissue engineering. World Journal of Orthopedics. 2015;6:127–36.Google Scholar
  214. 214.
    Hoffmann A, Gross G. Tendon and ligament engineering: from cell biology to in vivo application. Regen Med. 2006;1:563–74.Google Scholar
  215. 215.
    Dong Y, Zhang Q, Li Y, Jiang J, Chen S. Enhancement of tendon–bone healing for anterior cruciate ligament (ACL) reconstruction using bone marrow-derived mesenchymal stem cells infected with BMP-2. Int J Mol Sci. 2012;13:13605.Google Scholar
  216. 216.
    Wang C-J, Weng L-H, Hsu S-L, Sun Y-C, Yang Y-J, Chan Y-S, et al. pCMV–BMP-2-transfected cell-mediated gene therapy in anterior cruciate ligament reconstruction in rabbits. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2010;26:968–76.Google Scholar
  217. 217.
    Huang TF, Chen YT, Yang TH, Chen LL, Chiou SH, Tsai TH, et al. Isolation and characterization of mesenchymal stromal cells from human anterior cruciate ligament. Cytotherapy. 2008;10:806–14.Google Scholar
  218. 218.
    Cheng M-T, Liu C-L, Chen T-H, Lee OK. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering. Tissue Eng A. 2010;16:2237–53.Google Scholar
  219. 219.
    Sarah B, Bizunesh MB, Marieke Z, Tom M, Bert S, Marc S, et al. Intravenous application of allogenic peripheral blood-derived mesenchymal stem cells: a safety assessment in 291 equine recipients. Current Stem Cell Research & Therapy. 2014;9:452–7.Google Scholar
  220. 220.
    Vandenberghe A, Broeckx SY, Beerts C, Seys B, Zimmerman M, Verweire I, et al. Tenogenically induced allogeneic mesenchymal stem cells for the treatment of proximal suspensory ligament desmitis in a horse. Frontiers in Veterinary Science. 2015;2Google Scholar
  221. 221.
    Tei K, Matsumoto T, Mifune Y, Ishida K, Sasaki K, Shoji T, et al. Administrations of peripheral blood CD34-positive cells contribute to medial collateral ligament healing via vasculogenesis. Stem Cells. 2008;26:819–30.Google Scholar
  222. 222.
    Uefuji A, Matsumoto T, Matsushita T, Ueha T, Zhang S, Kurosaka M, et al. Age-related differences in anterior cruciate ligament remnant vascular-derived cells. Am J Sports Med. 2014;42:1478–86.Google Scholar
  223. 223.
    Proffen BL, Vavken P, Haslauer CM, Fleming BC, Harris CE, Machan JT, et al. Addition of autologous mesenchymal stem cells to whole blood for bioenhanced ACL repair has no benefit in the porcine model. Am J Sports Med. 2015;43:320–30.Google Scholar
  224. 224.
    Buckwalter J, Mankin H. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1997;47:477–86.Google Scholar
  225. 225.
    Responte DJ, Natoli RM, Athanasiou KA. Collagens of articular cartilage: structure. Function, and Importance in Tissue Engineering. 2007;35:363–411.Google Scholar
  226. 226.
    Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, et al. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev. 2015;84:107–22.Google Scholar
  227. 227.
    Escobar JL, Ivirico MB, Kuyinu E, Nair LS, Laurencin CT. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering. 2017;3:16–27.Google Scholar
  228. 228.
    Fox AJS, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1:461–8.Google Scholar
  229. 229.
    Leijten JC, Georgi N, Wu L, van Blitterswijk CA, Karperien M. Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures. Tissue Eng B Rev. 2013;19:31–40.Google Scholar
  230. 230.
    Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010;468:147–57.Google Scholar
  231. 231.
    Ossendorf C, Steinwachs MR, Kreuz PC, Osterhoff G, Lahm A, Ducommun PP, et al. Autologous chondrocyte implantation (ACI) for the treatment of large and complex cartilage lesions of the knee. Sports Med, Arthrosc, Rehabil, Ther Technol. 2011;3:11.Google Scholar
  232. 232.
    Viste A, Piperno M, Desmarchelier R, Grosclaude S, Moyen B, Fessy MH. Autologous chondrocyte implantation for traumatic full-thickness cartilage defects of the knee in 14 patients: 6-year functional outcomes. Orthop Traumatol Surg Res. 2012;98:737–43.Google Scholar
  233. 233.
    Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–24.Google Scholar
  234. 234.
    Barbero A, Grogan SP, Mainil-Varlet P, Martin I. Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. J Cell Biochem. 2006;98:1140–9.Google Scholar
  235. 235.
    Jenniskens YM, Koevoet W, de Bart AC, Weinans H, Jahr H, Verhaar JA, et al. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFbeta2 and FGF2. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2006;14:1136–46.Google Scholar
  236. 236.
    Candrian C, Vonwil D, Barbero A, Bonacina E, Miot S, Farhadi J, et al. Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis & Rheumatism. 2008;58:197–208.Google Scholar
  237. 237.
    Scotti C, Osmokrovic A, Wolf F, Miot S, Peretti GM, Barbero A, et al. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng A. 2011;18:362–72.Google Scholar
  238. 238.
    Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 388:1985–94.Google Scholar
  239. 239.
    Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5:e13246.Google Scholar
  240. 240.
    Seol D, McCabe DJ, Choe H, Zheng H, Yu Y, Jang K, et al. Chondrogenic progenitor cells respond to cartilage injury. Arthritis & Rheumatism. 2012;64:3626–37.Google Scholar
  241. 241.
    Cucchiarini M, Venkatesan JK, Ekici M, Schmitt G, Madry H. Human mesenchymal stem cells overexpressing therapeutic genes: from basic science to clinical applications for articular cartilage repair. Biomed Mater Eng. 2012;22:197–208.Google Scholar
  242. 242.
    Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 2007;4:415–28.Google Scholar
  243. 243.
    Al Faqeh H, Nor Hamdan BMY, Chen HC, Aminuddin BS, Ruszymah BHI. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol. 2012;47:458–64.Google Scholar
  244. 244.
    Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Engineering Part C: Methods. 2009;15:647–58.Google Scholar
  245. 245.
    Li Q, Tang J, Wang R, Bei C, Xin L, Zeng Y, et al. Comparing the chondrogenic potential in vivo of autogeneic mesenchymal stem cells derived from different tissues. Artificial Cells, Blood Substitutes, and Biotechnology. 2011;39:31–8.Google Scholar
  246. 246.
    McIlwraith CW, Frisbie DD, Rodkey WG, Kisiday JD, Werpy NM, Kawcak CE, et al. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2011;27:1552–61.Google Scholar
  247. 247.
    Xie X, Wang Y, Zhao C, Guo S, Liu S, Jia W, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33:7008–18.Google Scholar
  248. 248.
    Soler R, Orozco L, Munar A, Huguet M, López R, Vives J, et al. Final results of a phase I–II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee. 2016;23(4):647–54.Google Scholar
  249. 249.
    Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng A. 2009;16:523–33.Google Scholar
  250. 250.
    Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis & Rheumatism. 2006;54:1222–32.Google Scholar
  251. 251.
    Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials. 2006;27:91–9.Google Scholar
  252. 252.
    Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G, et al. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30:2683–93.Google Scholar
  253. 253.
    Koh Y-G, Choi Y-J, Kwon S-K, Kim Y-S, Yeo J-E. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2013;23:1308–16.Google Scholar
  254. 254.
    Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, Veronesi F, et al. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Research & Therapy. 2013;15:1–16.Google Scholar
  255. 255.
    Guercio A, Di Marco P, Casella S, Cannella V, Russotto L, Purpari G, et al. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int. 2012;36:189–94.Google Scholar
  256. 256.
    Jurgens WJFM, Kroeze RJ, Zandieh-Doulabi B, van Dijk A, Renders GAP, Smit TH, et al. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. BioResearch Open Access. 2013;2:315–25.Google Scholar
  257. 257.
    Afizah H, Yang Z, Hui JH, Ouyang HW, Lee EH. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 2007;13:659–66.Google Scholar
  258. 258.
    Segawa Y, Muneta T, Makino H, Nimura A, Mochizuki T, Ju Y-J, et al. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J Orthop Res. 2009;27:435–41.Google Scholar
  259. 259.
    Fan J, Varshney RR, Ren L, Cai D, Wang D-A. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng B Rev. 2009;15:75–86.Google Scholar
  260. 260.
    Shirasawa S, Sekiya I, Sakaguchi Y, Yagishita K, Ichinose S, Muneta T. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97:84–97.Google Scholar
  261. 261.
    Lee J-C, Lee SY, Min HJ, Han SA, Jang J, Lee S, et al. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng A. 2012;18:2173–86.Google Scholar
  262. 262.
    Lee J-C, Min HJ, Park HJ, Lee S, Seong SC, Lee MC. Synovial membrane–derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2013;29:1034–46.Google Scholar
  263. 263.
    MEASE PJ, HANNA S, FRAKES EP, ALTMAN RD. Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment. J Rheumatol. 2011;38:1546–51.Google Scholar
  264. 264.
    Shimomura K, Ando W, Tateishi K, Nansai R, Fujie H, Hart DA, et al. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials. 2010;31:8004–11.Google Scholar
  265. 265.
    Saw K-Y, Anz A, Merican S, Tay Y-G, Ragavanaidu K, Jee CSY, et al. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2011;27:493–506.Google Scholar
  266. 266.
    Turajane T, Chaweewannakorn U, Larbpaiboonpong V, Aojanepong J, Thitiset T, Honsawek S, et al. Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation Improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. J Med Assoc Thail = Chotmaihet thangphaet. 2013;96:580–8.Google Scholar
  267. 267.
    Fu W-L, Ao Y-F, Ke X-Y, Zheng Z-Z, Gong X, Jiang D, et al. Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment. Knee. 2014;21:609–12.Google Scholar
  268. 268.
    Ossendorf C, Steinwachs MR, Kreuz PC, Osterhoff G, Lahm A, Ducommun PP, et al. Autologous chondrocyte implantation (ACI) for the treatment of large and complex cartilage lesions of the knee. Sports Med, Arthrosc, Rehabil, Ther Technol: SMARTT. 2011;3:11.Google Scholar
  269. 269.
    Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue engineering Part C, Methods. 2009;15:647–58.Google Scholar
  270. 270.
    Soler R, Orozco L, Munar A, Huguet M, López R, Vives J, et al. Final results of a phase I–II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee. 2016;23:647–54.Google Scholar
  271. 271.
    Koh Y-G, Choi Y-J, Kwon S-K, Kim Y-S, Yeo J-E. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23:1308–16.Google Scholar
  272. 272.
    Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, et al. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A. 2012;18:2173–86.Google Scholar
  273. 273.
    Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998;193:161–78.Google Scholar
  274. 274.
    Maher SA, Rodeo SA, Warren RF. The meniscus. J Am Acad Orthop Surg. 2017;25:e18–e9.Google Scholar
  275. 275.
    Vaquero J, Forriol F. Meniscus tear surgery and meniscus replacement. Muscles, Ligaments and Tendons Journal. 2016;6:71–89.Google Scholar
  276. 276.
    Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. JBJS. 1983;65:538–47.Google Scholar
  277. 277.
    Fox AJS, Bedi A, Rodeo SA. The basic science of human knee menisci. Sports Health. 2011;4:340–51.Google Scholar
  278. 278.
    Pereira H, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. The meniscus: basic science. In: Verdonk R, Espregueira Mendes J, Monllau JC, editors. Meniscal transplantation. Berlin: Springer; 2013. p. 7–14.Google Scholar
  279. 279.
    Kohn D, Moreno B. Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy. 1995;11:96–103.Google Scholar
  280. 280.
    Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32:7411–31.Google Scholar
  281. 281.
    Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43:635–40.Google Scholar
  282. 282.
    DeHaven KE, Sebastianelli WJ. Open meniscus repair. Indications, technique, and results. Clin Sports Med. 1990;9:577–87.Google Scholar
  283. 283.
    Harston A, Nyland J, Brand E, McGinnis M, Caborn DNM. Collagen meniscus implantation: a systematic review including rehabilitation and return to sports activity. Knee Surg Sports Traumatol Arthrosc. 2012;20:135–46.Google Scholar
  284. 284.
    Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27:11–23.Google Scholar
  285. 285.
    Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil. 2006;14:1056–65.Google Scholar
  286. 286.
    Marijnissen WJCM, van Osch GJVM, Aigner J, van der Veen SW, Hollander AP, Verwoerd-Verhoef HL, et al. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials. 2002;23:1511–7.Google Scholar
  287. 287.
    Cook JL, Fox DB, Malaviya P, Tomlinson JL, Kuroki K, Cook CR, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med. 2006;34:32–42.Google Scholar
  288. 288.
    Heijkants RGJC, van Calck RV, de Groot JH, Pennings AJ, Schouten AJ, van Tienen TG, et al. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med. 2004;15:423–7.Google Scholar
  289. 289.
    Grande D, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34:211–20.Google Scholar
  290. 290.
    Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Science. Transl Med. 2014;6:266ra171.Google Scholar
  291. 291.
    Webber RJ, Harris MG, Hough AJ. Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res. 1985;3:36–42.Google Scholar
  292. 292.
    Tumia NS, Johnstone AJ. Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med. 2004;32:915–20.Google Scholar
  293. 293.
    Kang S-W, Son S-M, Lee J-S, Lee E-S, Lee K-Y, Park S-G, et al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A. 2006;78A:638–51.Google Scholar
  294. 294.
    Peretti GM, Gill TJ, Xu J-W, Randolph MA, Morse KR, Zaleske DJ. Cell-based therapy for meniscal repair. Am J Sports Med. 2004;32:146–58.Google Scholar
  295. 295.
    Esposito AR, Moda M, Cattani SM, de Santana GM, Barbieri JA, Munhoz MM, et al. PLDLA/PCL-T scaffold for meniscus tissue engineering. BioResearch open access. 2013;2:138–47.Google Scholar
  296. 296.
    Gunja NJ, Athanasiou KA. Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell-seeded PLLA scaffolds. J Tissue Eng Regen Med. 2010;4:115–22.Google Scholar
  297. 297.
    Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 2007;13:1103–12.Google Scholar
  298. 298.
    Fox DB, Warnock JJ, Stoker AM, Luther JK, Cockrell M. Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Sci. 2010;88:326–32.Google Scholar
  299. 299.
    Ballard GA, Warnock JJ, Bobe G, Duesterdieck-Zellmer KF, Baker L, Baltzer WI, et al. Comparison of meniscal fibrochondrocyte and synoviocyte bioscaffolds toward meniscal tissue engineering in the dog. Res Vet Sci. 2014;97:400–8.Google Scholar
  300. 300.
    Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A. 2010;94A:1150–61.Google Scholar
  301. 301.
    Zellner J, Hierl K, Mueller M, Pfeifer C, Berner A, Dienstknecht T, et al. Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater. 2013;101:1133–42.Google Scholar
  302. 302.
    Ferris DJ, Frisbie DD, Kisiday JD, McIlwraith CW, Hague BA, Major MD, et al. Clinical outcome after intra-articular administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle injury. Vet Surg. 2014;43:255–65.Google Scholar
  303. 303.
    Vangsness CTJ, Farr JI, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind controlled study. JBJS. 2014;96:90–8.Google Scholar
  304. 304.
    Horie M, Sekiya I, Muneta T, Ichinose S, Matsumoto K, Saito H, et al. Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells. 2009;27:878–87.Google Scholar
  305. 305.
    Horie M, Driscoll MD, Sampson HW, Sekiya I, Caroom CT, Prockop DJ, et al. Implantation of allogenic synovial stem cells promotes meniscal regeneration in a rabbit meniscal defect model. JBJS. 2012;94:701–12.Google Scholar
  306. 306.
    Nakagawa Y, Muneta T, Kondo S, Mizuno M, Takakuda K, Ichinose S, et al. Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs. Osteoarthr Cartil. 2015;23:1007–17.Google Scholar
  307. 307.
    Pak J, Lee JH, Lee SH. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells. Biomed Res Int. 2014;2014:10.Google Scholar
  308. 308.
    Mandal BB, Park S-H, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2011;32:639–51.Google Scholar
  309. 309.
    Halili AN, Hasirci N, Hasirci V. A multilayer tissue engineered meniscus substitute. J Mater Sci Mater Med. 2014;25:1195–209.Google Scholar
  310. 310.
    Tan G-K, Dinnes DLM, Butler LN, Cooper-White JJ. Interactions between meniscal cells and a self assembled biomimetic surface composed of hyaluronic acid, chitosan and meniscal extracellular matrix molecules. Biomaterials. 2010;31:6104–18.Google Scholar
  311. 311.
    Jakob M, Demarteau O, Schäfer D, Hintermann B, Dick W, Heberer M, et al. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem. 2001;81:368–77.Google Scholar
  312. 312.
    Baker BM, Nathan AS, Huffman GR, Mauck RL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthr Cartil. 2009;17:336–45.Google Scholar
  313. 313.
    Port J, Jackson DW, Lee TQ, Simon TM. Meniscal repair supplemented with exogenous fibrin clot and autogenous cultured marrow cells in the goat model. Am J Sports Med. 1996;24:547–55.Google Scholar
  314. 314.
    Walsh CJ, Goodman D, Caplan AI, Goldberg VM. Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng. 1999;5:327–37.Google Scholar
  315. 315.
    Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis & Rheumatism. 2003;48:3464–74.Google Scholar
  316. 316.
    Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.Google Scholar
  317. 317.
    Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R. Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee. 2005;12:217–23.Google Scholar
  318. 318.
    Ding Z, Huang H. Mesenchymal stem cells in rabbit meniscus and bone marrow exhibit a similar feature but a heterogeneous multi-differentiation potential: superiority of meniscus as a cell source for meniscus repair. BMC Musculoskelet Disord. 2015;16:65.Google Scholar
  319. 319.
    Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008;100:133–58.Google Scholar
  320. 320.
    Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends in Biotechnology. 2007;25:24–32.Google Scholar
  321. 321.
    Wyles SP, Yamada S, Oommen S, Maleszewski JJ, Beraldi R, Martinez-Fernandez A, et al. Inhibition of DNA topoisomerase II selectively reduces the threat of tumorigenicity following induced pluripotent stem cell-based myocardial therapy. Stem Cells Dev. 2014;23:2274–82.Google Scholar
  322. 322.
    Friedenstein AJ, Gorskaja J, Kulagina N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4:267–74.Google Scholar
  323. 323.
    Wegmeyer H, Bröske A-M, Leddin M, Kuentzer K, Nisslbeck AK, Hupfeld J, et al. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev. 2013;22:2606–18.Google Scholar
  324. 324.
    Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21:2724–52.Google Scholar
  325. 325.
    Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis & Rheumatism. 2002;46:704–13.Google Scholar
  326. 326.
    Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng A. 2012;18:1161–70.Google Scholar
  327. 327.
    Gawlitta D, van Rijen MH, Schrijver EJ, Alblas J, Dhert WJ. Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells. Tissue Eng Part A. 2012;18:1957–66.Google Scholar
  328. 328.
    Sheehy EJ, Buckley CT, Kelly DJ. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells. Biochemical and Biophysical Research Communications. 417:305–10.Google Scholar
  329. 329.
    Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ, Wenstrup RJ. Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res. 2004;22:998–1003.Google Scholar
  330. 330.
    Tasso R, Augello A, Carida’ M, Postiglione F, Tibiletti MG, Bernasconi B, et al. Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds. Carcinogenesis. 2009;30:150–7.Google Scholar

Copyright information

© The Regenerative Engineering Society 2017

Authors and Affiliations

  • Ganesh Narayanan
    • 1
    • 2
    • 3
  • Maumita Bhattacharjee
    • 1
    • 2
    • 3
  • Lakshmi S. Nair
    • 1
    • 2
    • 3
    • 6
    • 7
  • Cato T. Laurencin
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    Email author
  1. 1.Institute for Regenerative EngineeringUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering SciencesUniversity of Connecticut Health CenterFarmingtonUSA
  3. 3.Department of Orthopaedic SurgeryUniversity of Connecticut Health CenterFarmingtonUSA
  4. 4.Department of Reconstructive SciencesUniversity of Connecticut Health CenterFarmingtonUSA
  5. 5.Department of Chemical and Biomolecular EngineeringUniversity of ConnecticutStorrsUSA
  6. 6.Department of Biomedical EngineeringUniversity of ConnecticutStorrsUSA
  7. 7.Department of Materials Science and EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations