Advertisement

Repair and Regeneration of the Wounded Cell Membrane

Review Paper
  • 214 Downloads

Abstract

Cell membrane disruption is a common consequence of physical and chemical trauma in biological systems. It has fundamental significance in pathogenesis of trauma-mediated tissue injury and is the root cause of many secondary injury processes—edema, inflammation, tissue necrosis, etc.—that are the therapeutic focus of most clinical trauma interventions. Natural plasmalemma sealing mechanisms allow cells to handle routine environmental and physiological stresses. Lethal cell membrane disruption occurs when injury exceeds these mechanisms. Substantial progress has been made in the development of therapeutics to augment sealing of disrupted plasmalemma membranes. Today, therapeutics specifically targeted to seal wounded membranes is not a focus of current clinical trauma therapy. This review describes (1) how various forms of trauma result in membrane wounding, (2) the natural cell membrane healing mechanisms that cells rely upon to repair a wounded plasmalemma membrane, and (3) chemical design existing and emerging treatments designed to supplement the repair response. Our purpose is to emphasize the importance of stabilizing the plasmalemma for cellular resuscitation and to encourage the development of membrane sealing therapies for traumatic injury.

Lay Summary

An intact membrane is critical for cellular survival, but membranes are disrupted in a variety of traumatic injuries. In this paper, we review the process of cellular wounding and the innate mechanisms of membrane repair. We then provide a comprehensive overview of biocompatible polymers shown to promote cellular resuscitation by reinforcing or resealing the plasmalemma. The purpose of this review is to identify common properties of polymeric membrane sealants and to stimulate further development of these therapeutic macromolecules for traumatic injury.

Keywords

Cellular injury Membrane repair Traumatic injury Poloxamer Polyethylene glycol 

Notes

Acknowledgements

This work was supported by the National Institutes of Health, National Institute of General Medical Sciences through the T32 Training Grant GM099697. We would like to thank Colin McFaul, Kristen Jakubowski, Nosheen Gothard, and all former members of the Laboratory for Molecular Regeneration.

References

  1. 1.
    Veenith T, Goon SSH, Burnstein RM. Molecular mechanisms of traumatic brain injury: the missing link in management. World J Emerg Surg. 2009;4:7. doi: 10.1186/1749-7922-4-7.Google Scholar
  2. 2.
    Ahrenholz DH, Cope N, Dimick AR, Gamelli RL, Gillespie RW, Kagan RJ, Kealey GP, Peck MD, Pitts LH, Purdue GF, Saffle JR, Sheridan RL, Sundance P, Sweetser S, Tompkins RG, Wainwright DJ, Warden GD. Practice guidelines for burn care, chapter seven: burn shock resuscitation: initial management and overview. J Burn Care Rehabil. 2001;27S–37S.Google Scholar
  3. 3.
    Becker LB. Cellular resuscitation, basic science, and the future of emergency medicine. Ann Emerg Med. 1989;18(8):896–7.Google Scholar
  4. 4.
    Borgens RB, Liu-Snyder P. Understanding secondary injury. Q Rev Biol. 2012;87(2):89–127.Google Scholar
  5. 5.
    Centers for Disease Control and Prevention. Traumatic brain injury in the United States: fact sheet. 2016. www.cdc.gov/traumaticbraininjury/get_the_facts.html. Accessed 3 Apr 2016.
  6. 6.
    American Burn Association. Burn incidence and treatment in the United States: 2015. 2014. www.ameriburn.org/resources_factsheet.php. Accessed 3 Apr 2016.
  7. 7.
    National Spinal Cord Injury Statistical Center. Spinal cord injury (SCI) facts and figures at a glance. Birmingham, AL: University of Alabama at Birmingham; 2015.Google Scholar
  8. 8.
    Parsegian A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature. 1969;221(5183):844–6.Google Scholar
  9. 9.
    Lodish H, Berk A, Zipurskey SL, Matsudaira P, Baltimore D, Darnell J. Molecular biology of the cell, 4th edition. Section 15.5. New York: W. H. Freeman; 2000.Google Scholar
  10. 10.
    Powell KT, Weaver JC. Transient aqueous pores in bilayer membranes: a statistical theory. Bioelectrochem Bioenerg. 1986;15(2):211–27.Google Scholar
  11. 11.
    Leckband D, Israelachvili J. Intermolecular forces in biology. Q Rev Biophys. 2001;34(2):105–267. doi: 10.1017/S0033583501003687.Google Scholar
  12. 12.
    Marsh D. Lateral pressure in membranes. Biochim Biophys Acta. 1996;1286:183–223.Google Scholar
  13. 13.
    Israelachvili JN. Chapter 21 interactions of biological membranes and structures. Intermolecular and surface forces. Third ed. Burlington, MA: Academic Press; 2011. p. 577–616.Google Scholar
  14. 14.
    Disalvo EA, Lairion F, Martini F, Tymczyszyn E, Frias M, Almaleck H, Gordillo GJ. Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta Biomembr. 2008;1778(12):2655–70. doi: 10.1016/j.bbamem.2008.08.025.Google Scholar
  15. 15.
    Fukuma T, Higgins MJ, Jarvis SP. Direct imaging of individual intrinsic hydration layers on lipid bilayers at angstrom resolution. Biophys J. 2007;92(10):3603–9. doi: 10.1529/biophysj.106.100651.Google Scholar
  16. 16.
    Higgins MJ, Polcik M, Fukuma T, Sader JE, Nakayama Y, Jarvis SP. Structured water layers adjacent to biological membranes. Biophys J. 2006;91(7):2532–42. doi: 10.1529/biophysj.106.085688.Google Scholar
  17. 17.
    Franck JM, Scott JA, Han S. Nonlinear scaling of surface water diffusion with bulk water viscosity of crowded solutions. J Am Chem Soc. 2013;135(11):4175–8. doi: 10.1021/ja3112912.Google Scholar
  18. 18.
    Sendner C, Horinek D, Bocquet L, Netz RR. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir. 2009;25(18):10768–81. doi: 10.1021/la901314b.Google Scholar
  19. 19.
    McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–36.Google Scholar
  20. 20.
    Lovering RM, Roche JA, Bloch RJ, De Deyne PG. Recovery of function in skeletal muscle following 2 different contraction-induced injuries. Arch Phys Med Rehabil. 2007;88(5):617–25. doi: 10.1016/j.apmr.2007.02.010.Google Scholar
  21. 21.
    Miyake K, McNeil PL. Mechanical injury and repair of cells. Crit Care Med. 2003;31(8):S496–501.Google Scholar
  22. 22.
    Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-induced muscle fibre injury. Sports Med. 1991;12(3):184–207.Google Scholar
  23. 23.
    Chang DC, Reese TS. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J. 1990;58(1):1–12. doi: 10.1016/S0006-3495(90)82348-1.Google Scholar
  24. 24.
    Castellot JJ, Miller MR, Pardee AB. Animal cells reversibly permeable to small molecules. Proc Natl Acad Sci U S A. 1978;75(1):351–5.Google Scholar
  25. 25.
    Aiello GL, Bach-y-Rita P. The cost of an action potential. J Neurosci Methods. 2000;103(2):145–149. doi: 10.1016/S0165-0270(00)00308-3.
  26. 26.
    Laughlin SB, Ruyter van Steveninck RR, Anderson JC. The metabolic cost of neural information. Nat Neurosci. 1998;1:36–41. doi: 10.1038/236.Google Scholar
  27. 27.
    Westerblad H, Bruton JD, Katz A. Skeletal muscle: energy metabolism, fiber types, fatigue, and adaptability. Exp Cell Res. 2010;316(18):3093–9. doi: 10.1016/j.yexcr.2010.05.019.Google Scholar
  28. 28.
    Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003;10:2495–505.Google Scholar
  29. 29.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Caclium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287:C817–33. doi: 10.1152/ajpcell.00139.2004.Google Scholar
  30. 30.
    Bandyopadhyay U, Das D, Banerjee RK. Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci. 1999;77(5):658–66.Google Scholar
  31. 31.
    Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76.Google Scholar
  32. 32.
    Chabot F, Mitchell JA, Gutteridge JMC, Evans TW. Reactive oxygen species in acute lung injury. Eur Respir J. 1998;11:745–57. doi: 10.1183/09031936.98.11030745.CrossRefGoogle Scholar
  33. 33.
    Kroemer G, Galluzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163.Google Scholar
  34. 34.
    Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci. 2013;126:1905–12. doi: 10.1242/jcs.091181.Google Scholar
  35. 35.
    Kass GE, Orrenius S. Calcium signaling and cytotoxicity. Environ Health Perspect. 1999;107:25–35.Google Scholar
  36. 36.
    Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34(2):232–7.Google Scholar
  37. 37.
    White BC, Daya A, DeGracia DJ, O’Neil BJ, Skjaerlund JM, Trumble S, Krause GS, Rafols JA. Fluorescent histochemical localization of lipid peroxidation during brain reperfusion following cardiac arrest. Acta Neuropathol. 1993;86(1):1–9.Google Scholar
  38. 38.
    Hickey MJ, Knight KR, Lepore DA, Hurley JV, Morrison WA. Influence of postischemic administration of oxyradical antagonists on ischemic injury to rabbit skeletal muscle. Microsurgery. 1996;17(9):517–23.Google Scholar
  39. 39.
    Palmer JS, Cromie WJ, Lee RC. Surfactant administration reduces testicular ischemia-reperfusion injury. J Urol. 1998;159(6):2136–9.Google Scholar
  40. 40.
    Nakazawa T, Nagatsuka S. Radiation-induced lipid peroxidation and membrane permeability in liposomes. Int J Radiat Biol Relat Stud Phys Chem Med. 1980;38(5):537–44.Google Scholar
  41. 41.
    Ashwell JD, Schwartz RH, Mitchell JB, Russo A. Effect of gamma radiation on resting B lymphocytes. I. Oxygen-dependent damage to the plasma membrane results in increased permeability and cell enlargement. J Immunol. 1986;136(10):3649–56.Google Scholar
  42. 42.
    Canaday D, Li P, Weichselbaum R, Astumian RD, Lee RC. Membrane permeability changes in gamma-irradiated muscle cells. Ann N Y Acad Sci. 1994;720:153–9. doi: 10.1111/j.1749-6632.1994.tb30443.Google Scholar
  43. 43.
    Hannig J, Yu J, Beckett M, Weichselbaum R, Lee RC. Poloxamine 1107 sealing of radiopermeabilized erythrocyte membranes. Int J Radiat Biol. 1999;75(3):379–85.Google Scholar
  44. 44.
    Hannig J, Zhang D, Canaday DJ, Beckett MA, Astumian RD, Weichselbaum RR, Lee RC. Surfactant sealing of membranes permeabilized by ionizing radiation. Radiat Res. 2000;154(2):171–7.Google Scholar
  45. 45.
    Terry MA, Hannig J, Carrillo CS, Beckett MA, Weichselbaum RR, Lee RC. Oxidative cell membrane alteration: evidence for surfactant-mediated sealing. Ann N Y Acad Sci. 1999;888:274–84. doi: 10.1111/j.1749-6632.1999.tb07962.x.Google Scholar
  46. 46.
    Binder H, Gawrisch K. Effect of unsaturated lipid chains on dimensions, molecular order and hydration of membranes. J Phys Chem B. 2001;105(49):12378–90.Google Scholar
  47. 47.
    Stanimirovic DB, Wong J, Ball R, Durkin JP. Free radical-induced endothelial membrane dysfunction at the site of blood-brain barrier: relationship between lipid peroxidation, Na,K-ATPase activity, and 51Cr release. Neurochem Res. 1995;20(12):1417–27.Google Scholar
  48. 48.
    Edimecheva IP, Kisel MA, Shadyro OI, Vlasov AP, Yurkova IL. The damage to phospholipids caused by free radical attack on glycerol and sphingosine backbone. Int J Radiat Biol. 1997;71(5):555–60.Google Scholar
  49. 49.
    Wong-ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J. 2007;93(12):4225–36. doi: 10.1529/biophysj.107.112565.Google Scholar
  50. 50.
    Hannig J, Lee RC. Structural changes in cell membranes after ionizing electromagnetic field exposure. IEEE Trans Plasma Sci. 2000;28(1):97–101.Google Scholar
  51. 51.
    Unal Cevik I, Dalkara T. Intravenously administred propidium iodid labels necrotic cells in the intact mouse brain after injury. Cell Death Differ. 2003;10:928–9. doi: 10.1038/sj.cdd.4401250.Google Scholar
  52. 52.
    Despa F, Orgill DP, Neuwalder J, Lee RC. The relative thermal stability of tissue macromolecules and cellular structure in burn injury. Burns. 2005;31(5):568–77.Google Scholar
  53. 53.
    Bischof JC, Padanilam J, Holmes WH, Ezzell RM, Lee RC, Tompkins RG, Yarmush ML, Toner M. Dynamics of cell membrane permeability changes at supraphysiological temperatures. Biophys J. 1995;68(6):2608–14.Google Scholar
  54. 54.
    Welch WJ, Suhan JP. Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol. 1985;101:1198–211.Google Scholar
  55. 55.
    Baxter CR. Fluid volume and electrolyte changes of the early postburn period. Clin Plast Surg. 1974;1(4):693–703.Google Scholar
  56. 56.
    Gaylor DG, Prakah-Asante A, Lee RC. Significance of cell size and tissue structure in electrical trauma. J Theor Biol. 1988;133(2):223–37.Google Scholar
  57. 57.
    Lee RC, Kolodney MS. Electrical injury mechanisms: electrical breakdown of cell membranes. Plast Reconstr Surg. 1987;80(5):672–9.Google Scholar
  58. 58.
    Lee RC, Gaylor DC, Bhatt D, Israel DA. Role of cell membrane rupture in the pathogenesis of electrical trauma. J Surg Res. 1988;44(6):709–19.Google Scholar
  59. 59.
    Block TA, Aarsvold JN, Matthews KL, Mintzer RA, River P, Capelli-Schellpfeffer M, Wollmann RL, Tripathi S, Chen CT, Lee RC. Nonthermally mediated muscle injury and necrosis in electrical trauma. J Burn Care Rehabil. 1995;16:581–8.Google Scholar
  60. 60.
    Chen C, Smye SW, Robinson MP, Evans JA. Membrane electroporation theories: a review. Med Biol Eng Comput. 2006;44(1–2):5–14.Google Scholar
  61. 61.
    Gross D. Electromobile surface charge alters membrane potential changes induced by applied electric fields. Biophys J. 1968;54(5):879–84. doi: 10.1016/S0006-3495(88)83024-8.Google Scholar
  62. 62.
    Poo M, Robinson KR. Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature. 1977;265(5595):602–5.Google Scholar
  63. 63.
    Poo M, Lam JW, Orida N, Chao AW. Electrophoresis and diffusion in the plane of the cell membrane. Biophys J. 1979;26(1):1–21. doi: 10.1016/S0006-3495(79)85231-5.Google Scholar
  64. 64.
    Poo M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng. 1981;10:245–76. doi: 10.1146/annurev.bb.10.060181.001333.Google Scholar
  65. 65.
    Gowrishankar TR, Pliquett U, Lee RC. Dynamics of membrane sealing in transient electropermeabilization of skeletal muscle membranes. Ann N Y Acad Sci. 2006;888:195–210. doi: 10.1111/j.1749-6632.1999.tb07957.x.Google Scholar
  66. 66.
    Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC. Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E. 2006;74(2):021904. doi: 10.1103/PhysRevE.74.021904.Google Scholar
  67. 67.
    Bier M, Hammer SM, Canaday DJ, Lee RC. Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics. 1999;20:194–201.Google Scholar
  68. 68.
    LaPlaca MC, Lee VM, Prado GR, Cullen DK. CNS injury biomechanics and experimental models. Prog Brain Res. 2007;161:13–26.Google Scholar
  69. 69.
    Farkas O, Povlishock JT. Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Prog Brain Res. 2007;161:43–59.Google Scholar
  70. 70.
    Whalen MJ, Dlakara T, You Z, Qiu J, Bermpohl D, Mehta N, Suter B, Bhide PG, Lo EH, Ericsson M, Moskowitz MA. Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab. 2008;28:490–505. doi: 10.1038/sj.jcbfm.9600544.Google Scholar
  71. 71.
    Geddes DM, Gargill RS 2nd, LaPlaca MC. Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma. 2003;20(10):1039–49.Google Scholar
  72. 72.
    Shi R, Whitebone J. Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain. J Neurophysiol. 2006;95(6):3384–90.Google Scholar
  73. 73.
    Simon CM, Sharif S, Tan RP, LaPlaca MC. Spinal cord contusion causes acute plasma membrane damage. J Neurotrauma. 2009;26(4):563–74. doi: 10.1089/neu.2008.0523.Google Scholar
  74. 74.
    Cargill RS 2nd, Thibault LE. Acute alterations in [Ca2+]I in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: an in vitro model for neural trauma. J Neurotrauma. 1996;13(7):395–407.Google Scholar
  75. 75.
    Rosengren A, Danielsen N, Bjursten LM. Reactive capsule formation around soft-tissue implants is related to cell necrosis. J Biomed Mater Res. 1999;46:458–64.Google Scholar
  76. 76.
    Karlsson JO, Cravalho EG, Borel Rinkes IH, Tompkins RG, Yarmush ML, Toner M. Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide. Biophys J. 1993;65(6):2524–36.Google Scholar
  77. 77.
    Fowler A, Toner M. Cryo-injury and biopreservation. Ann N Y Acad Sci. 2005;1066:119–35. doi: 10.1196/annals.1363.010.Google Scholar
  78. 78.
    Stroetz RW, Vlahakis NE, Walters BJ, Schroeder MA, Hubmayr RD. Validation of a new live cell strain system: characterization of plasma membrane stress failure. J Appl Physiol. 2001;90:2361–70.Google Scholar
  79. 79.
    McNeil PL, Steinhardt RA. Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol. 1997;137(1):1–4. doi: 10.1083/jcb.137.1.1.Google Scholar
  80. 80.
    Fischer TA, McNeil PL, Khakee R, Finn P, Kelly RA, Pfeffer MA, Pfeffer JM. Cardiac myocyte membrane wounding in the abruptly pressure-overloaded rat heart under high wall stress. Hypertension. 1997;30(5):1041–6.Google Scholar
  81. 81.
    Song MJ, Davis CI, Lawrence GG, Margulies SS. Local influence of cell viability on stretch-induced permeability of alveolar epithelial cell monolayers. Cell Mol Bioeng. 2016;9(1):65–72. doi: 10.1007/s12195-015-0405-8.Google Scholar
  82. 82.
    Hussein O, Walters B, Stroetz R, Valencia P, McCall D, Hubmayer RD. Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2013;305(7):L478–84. doi: 10.1152/ajplung.00437.2012.Google Scholar
  83. 83.
    Karatekin E, Sandre O, Guitouni H, Borhi N, Puech PH, Brochard-Wyart F. Cascades of transient pores in giant vesicles: line tension and transport. Biophys J. 2003;84:1734–49.Google Scholar
  84. 84.
    Brochard-Wyart F, de Gennes PG, Sandre O. Transient pores in stretched vesicles: role of leak-out. Physica A. 2000;278:32–51.Google Scholar
  85. 85.
    Jimenez AJ, Perez F. Physico-chemical and biological considerations for membrane wound evolution and repair in animal cells. Semin Cell Dev Biol. 2015;45:2–9. doi: 10.1016/j.semcdb.2015.09.023.Google Scholar
  86. 86.
    Steinhardt RA, Bi G, Alderton JM. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science. 1994;263(5145):390–3. doi: 10.1126/science.7904084.Google Scholar
  87. 87.
    Fishman HM, Tewari KP, Stein PG. Injury-induced vesiculation and membrane redistribution in squid giant axon. Biochim Biophys Acta Biomembr. 1990;1023(3):421–35.Google Scholar
  88. 88.
    Eddleman CS, Ballinger ML, Smyers ME, Godell CM, Fishman HM, Bittner GD. Repair of plasmalemmal lesions by vesicles. PNAS. 1997;94(9):4745–50.Google Scholar
  89. 89.
    Miyake K, McNeil PL. Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Chem Biol. 1995;131(6):1737–45. doi: 10.1083/jcb.131.6.1737.CrossRefGoogle Scholar
  90. 90.
    Togo T, Krasieva TB, Steinhardt RA. A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell. 2000;11:4339–46.Google Scholar
  91. 91.
    Vaughan EM, You JS, Elsie Yu HY, Lasek A, Vitale N, Hornberger TA, Bement WM. Lipid domain-dependent regulation of single-cell wound repair. Mol Biol Cell. 2014;25(12):1867–76. doi: 10.1091/mbc.E14-03-0839.Google Scholar
  92. 92.
    Matthews BD, Overby DR, Mannix R, Ingber DE. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci. 2006;119:508–18. doi: 10.1242/jcs.02760.Google Scholar
  93. 93.
    Godin LM, Vergen J, Prakash YS, Pagano RE, Hubmayr RD. Spatiotemporal dynamics of actin remodeling and endomembrane trafficking in alveolar epithelial type I cell wound healing. Am J Physiol Lung Cell Mol Physiol. 2011;300(4):L615–23. doi: 10.1152/ajplung.00265.2010.Google Scholar
  94. 94.
    Eddleman CS, Bittner GD, Fishman HM. Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Biophys J. 2000;79:1883–90.Google Scholar
  95. 95.
    Mellgren RL. A plasma membrane wound proteome. Reversible externalization of intracellular proteins following reparable mechanical damage. J Biol Chem. 2010;285(47):36597–607. doi: 10.1074/jbc.M110.110015.Google Scholar
  96. 96.
    Bi GQ, Alderton JM, Steinhardt RA. Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol. 1995;131(6):1747–58. doi: 10.1083/jcb.131.6.1747.Google Scholar
  97. 97.
    Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell. 2001;106(2):157–69. doi: 10.1016/S0092-8674(01)00421-4.Google Scholar
  98. 98.
    Rao SK, Huynh C, Proux-Gillardeaux V, Gelli T, Andrews NW. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J Biol Chem. 2005;279:20471–9. doi: 10.1074/jbc.M400798200.Google Scholar
  99. 99.
    Sen SS, Tucker WC, Chapman ER, Steinhardt RA. Molecular regulation of membrane resealing in 3T3 fibroblasts. J Biol Chem. 2005;280:1652–60. doi: 10.1074/jbc.M410136200.Google Scholar
  100. 100.
    Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW. Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol. 2008;180(5):905–14. doi: 10.1083/jcb.200708010.Google Scholar
  101. 101.
    Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F. ESCRT machinery is required for plasma membrane repair. Science. 2014;343(6174):1247136. doi: 10.1126/science.1247136.Google Scholar
  102. 102.
    Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 2003;423(6936):168–72.Google Scholar
  103. 103.
    Han R, Bansal D, Miyake K, Muniz VP, Weiss RM, McNeil PL, Campbell KP. Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest. 2007;117(7):1805–13. doi: 10.1172/JCI30848.Google Scholar
  104. 104.
    Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko JK, Lin P, Thornton A, Zhao X, Pan Z, Komazaki S, Brotto M, Takeshima H, Ma J. MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol. 2008;11:56–64. doi: 10.1038/ncb1812.Google Scholar
  105. 105.
    Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CL, Schallert T, Thayer WP. The curious ability of polyethylene glycol fusion technologies to restore lost behaviors after nerve severance. J Neurosci Res. 2016;94:207–30. doi: 10.1002/jnr.23685.Google Scholar
  106. 106.
    Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83:731–801. doi: 10.1152/physrev.00029.2002.Google Scholar
  107. 107.
    Mellgren RL, Huang X. Fetuin A stabilizes m-calpain and facilitates plasma membrane repair. J Biol Chem. 2007;282(49):35868–77. doi: 10.1074/jbc.M706929200.Google Scholar
  108. 108.
    Godell CM, Smyers ME, Eddleman CS, Ballinger ML, Fishman HM, Bittner GD. Calpain activity promotes the sealing of severed giant axons. Proc Natl Acad Sci U S A. 1997;94:4751–6.Google Scholar
  109. 109.
    Yamashima T, Oikawa S. The role of lysosomal rupture in neuronal death. Prog Neurobiol. 2009;89:343–58. doi: 10.1016/j.pneurobio.2009.09.003.Google Scholar
  110. 110.
    Babiychuk EB, Monastyrskaya K, Potez S, Draeger A. Intracellular Ca2+ operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ. 2009;16:1126–34. doi: 10.1038/cdd.2009.30.Google Scholar
  111. 111.
    Terasaki M, Miyake K, McNeil PL. Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. J Cell Biol. 1997;139(1):63–74. doi: 10.1083/jcb.139.1.63.Google Scholar
  112. 112.
    Andrews NW, Almeida PE, Corrote M. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol. 2014;24(12):734–42. doi: 10.1016/j.tcb.2014.07.008.Google Scholar
  113. 113.
    Blazek AD, Paleo BJ, Weisleder N. Plasma membrane repair: a central process for maintaining cellular homeostasis. Physiology. 2015;30:438–48. doi: 10.1152/physiol.00019.2015.Google Scholar
  114. 114.
    Boucher E, Mandato CA. Plasma membrane and cytoskeleton dynamics during single-cell wound healing. Biochim Biophys Acta. 1853;2015:2649–61. doi: 10.1016/j.bbamcr.2015.07.012.CrossRefGoogle Scholar
  115. 115.
    Cooper ST, McNeil PL. Membrane repair: mechanisms and pathophysiology. Physiol Rev. 2015;95:1205–40. doi: 10.1152/physrev.00037.2014.Google Scholar
  116. 116.
    Draeger A, Schoenauer R, Atanassoff AP, Wolfmeier H, Babiychuk EB. Dealing with damage: plasma membrane repair mechanisms. Biochimie. 2014;107:66–72. doi: 10.1016/j.biochi.2014.08.008.Google Scholar
  117. 117.
    Zhang Q, Bhattacharya S, Pi J, Clewell RA, Carmichael PL, Anderson ME. Adaptive posttranslational control in cellular stress response pathways and its relationship to toxicity testing and safety assessment. Toxicol Sci. 2015;147(2):302–16. doi: 10.1093/toxsci/kfv130.Google Scholar
  118. 118.
    Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11:4241–57.Google Scholar
  119. 119.
    Sheikh MS, Fornace AJ Jr. Regulation of translation initiation following stress. Oncogene. 1999;18:6121–8.Google Scholar
  120. 120.
    De Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nat Rev Genet. 2011;12:833–45. doi: 10.1038/nrg3055.Google Scholar
  121. 121.
    Fowler T, Sen R, Roy AL. Regulation of primary response genes. Mol Cell. 2011;44:348–60. doi: 10.1016/j.molcel.2011.09.014.Google Scholar
  122. 122.
    Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell. 2010;40:253–66. doi: 10.1016/j.molcel.2010.10.006.Google Scholar
  123. 123.
    Babiychuk EB, Monastyrskaya K, Potez S, Draeger A. Blebbing confers resistance against cell lysis. Cell Death Differ. 2011;18:80–9. doi: 10.1038/cdd.2010.81.Google Scholar
  124. 124.
    Keyel PA, Loultcheva L, Roth R, Salter RD, Watkins SC, Yokoyama WM, Heuser JE. O clearance through sequestration into blebs that bud passively from the plasma membrane. J Cell Sci. 2011;124:2414–23. doi: 10.1242/jcs.076182.Google Scholar
  125. 125.
    Dai J, Sheetz MP. Membrane tether formation from blebbing cells. Biophys J. 1999;77(6):3363–70. doi: 10.1016/S0006-3495(99)77168-7.Google Scholar
  126. 126.
    Florine-Casteel K, Lemasters JJ, Herman B. Lipid order in hepatocyte plasma membrane blebs during ATP depletion measured by digitized video fluorescence polarization microscopy. FASEB J. 1991;5(7):2078–84.Google Scholar
  127. 127.
    Fichenberger K, Bohni P, Winterhalter KH, Kawato S, Richter C. Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain. FEBS Lett. 1982;142(1):59–62.Google Scholar
  128. 128.
    Bruch RC, Thayer WS. Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes. Biochim Biophys Acta. 1983;733(2):216–22.Google Scholar
  129. 129.
    Gut J, Kawato S, Cherry RJ, Winterhalter KH, Richter C. Lipid peroxidation decreases the rotational mobility of cytochrome P-450 in rat liver microsomes. Biochim Biophys Acta. 1985;817(2):217–28.Google Scholar
  130. 130.
    Baenziger JE, Jarrell HC, Hill RJ, Smith ICP. Average structural and motional properties of a diunsaturated acyl chain in a lipid bilayer: effects of two cis-unsaturated double bonds. Biochemistry. 1991;30(4):894–903.Google Scholar
  131. 131.
    Malorni W, Iosi F, Mirabelli F, Bellomo G. Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells: alterations underlying bleb formation. Chem Biol Interact. 1991;80(2):217–36.Google Scholar
  132. 132.
    Hagmann J, Burger MM, Dagan D. Regulation of plasma membrane blebbing by the cytoskeleton. J Cell Biochem. 1999;73(4):488–99. doi: 10.1002/(SICI)1097-4644(19990615)73:4<488::AID-JCB7>3.0.CO;2-P.Google Scholar
  133. 133.
    Charras GT, Coughlin M, Mitchison TJ, Mahadevan L. Life and times of a cellular bleb. Biophys J. 2008;94(5):1836–53. doi: 10.1529/biophysj.107.113605.Google Scholar
  134. 134.
    Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E. Role of cortical tension in bleb growth. Proc Natl Acad Sci U S A. 2009;106(44):18581–6. doi: 10.1073/pnas.093353106.Google Scholar
  135. 135.
    Borgens RB. Cellular engineering: molecular repair of membranes to rescue cells of the damaged nervous system. Neurosurgery. 2001;49(2):370–9.Google Scholar
  136. 136.
    Lee RC. Cytoprotection by stabilization of cell membranes. Ann N Y Acad Sci. 2002;961:271–5.Google Scholar
  137. 137.
    Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med. 2014;276:579–617. doi: 10.1111/joim.12280.Google Scholar
  138. 138.
    Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT, Orr BG, Baker JR, Banaszak Holl MM. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem. 2006;17:728–34. doi: 10.1021/bc060077y.Google Scholar
  139. 139.
    Cambon A, Brea J, Loza MI, Alvarez-Lorenzo C, Concheiro A, Barbosa S, Taboada P, Mosquera V. Cytocompatibility and P-glycoprotein inhibition of block copolymers: structure-activity relationship. Mol Pharm. 2013;10:3232–41. doi: 10.1021/mp4002848.Google Scholar
  140. 140.
    Kao KN, Constabel F, Michayluck MR, Gamborg OL. Plant protoplast fusion and growth of intergeneric hybrid cells. Planta. 1974;120(3):215–2257. doi: 10.1007/BF00.90290.Google Scholar
  141. 141.
    Ahkong QF, Isobel Howell J, Lucy JA, Safwat F, Davey MR, Cocking EC. Fusion of hen erythrocytes with yeast protoplasts induced by polyethylene glycol. Nature. 1975b;255:66–7. doi: 10.1038/255066a0.Google Scholar
  142. 142.
    Hui SW, Kuhl TL, Guo YQ, Israelachvili J. Use of poly(ethylene glycol) to control cell aggregation and fusion. Colloids Surf B: Biointerfaces. 1999;14(1–4):213–22. doi: 10.1016/s0927-7765(99)00037-5.Google Scholar
  143. 143.
    Aldwinckle TJ, Ahkong QF, Bangham AD, Fisher D, Lucy JA. Effects of poly(ethylene glycol) on liposomes and erythrocytes: permeability changes and membrane fusion. Biochim Biophys Acta. 1982;689(3):548–60. doi: 10.1016/0005-2736(82)90313-3.Google Scholar
  144. 144.
    Wojcieszyn JW, Schlegel RA, Lumley-Sapanski K, Jacobson KA. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J Cell Biol. 1983;96:151–9.Google Scholar
  145. 145.
    Robinson JM, Roos DS, Davidson RL, Karnovsky MJ. Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion. J Cell Sci. 1979;40:63–75.Google Scholar
  146. 146.
    Ahkong QF, Fisher D, Tampion W, Lucy JA. Mechanisms of cell fusion. Nature. 1975a;253:194–5. doi: 10.1038/253194a0.Google Scholar
  147. 147.
    Knutton S. Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol. J Cell Sci. 1979;36:61–72.Google Scholar
  148. 148.
    Krahling H. “Discrimination of two fusogenic properties of aqueous polyethylene glycol solutions,” Zeitschrift fur Naturforschung. Section C: Biosciences. 1981;36(7–8):593–6.Google Scholar
  149. 149.
    Lee JK, Lentz BR. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry. 1997;36(21):6251–9. doi: 10.1021/bi970404c.Google Scholar
  150. 150.
    Kuhl T, Guo Y, Alderfer JL, Berman AD, Leckband D, Israelachvili J, Hui SW. Direct measurement of polyethylene glycol induced depletion attraction between lipid bilayers. Langmuir. 1996;12:3003–14.Google Scholar
  151. 151.
    Kuhl TL, Berman AD, Hui SW, Israelachvili JN. Part 2. Crossover from depletion attraction to adsorption: polyethylene glycol induced electrostatic repulsion between lipid bilayers. Macromolecules. 1998;31(23):8258–63. doi: 10.1021/ma9714326.Google Scholar
  152. 152.
    Ortony JH, Cheng CY, Franck JM, Kausik R, Pavlova A, Hunt J, Han S. Probing the hydration water diffusion of macromolecular surfaces and interfaces. New J Phys. 2011;13:015006. doi: 10.1088/1367-2630/13/1/015006.Google Scholar
  153. 153.
    Cheng CY, Wang JY, Kausik R, Lee KYC, Han S. An ultrasensitive tool exploiting hydration dynamics to decipher weak lipid membrane-polymer interactions. J Magn Reson. 2012;215:115–9. doi: 10.1016/j.jmr.2011.12.004.Google Scholar
  154. 154.
    Cheng CY, Wang JY, Kausik R, Lee KYC, Han S. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization. Biomacromolecules. 2012;13:2624–33. doi: 10.1021/bm300848c.Google Scholar
  155. 155.
    Krause TL, Bittner GD. Rapid morphological fusion of severed myelinated axons by polyethylene glycol. PNAS. 1990;87(4):1471–5. doi: 10.1073/pnas.87.4.1471.Google Scholar
  156. 156.
    Marzullo TC, Britt JM, Stavisky RC, Bittner GD. Cooling enhances in vitro survival and fusion-repair of severed axons taken from the peripheral and central nervous systems of rats. Neurosci Lett. 2002;327:9–12.Google Scholar
  157. 157.
    Riley DC, Bittner GD, Mikesh M, Cardwell NL, Pollins AC, Ghergherehchi CL, Bhupanapadu Sunkesula SR, Ha TN, Hall BTD, Poon AD, Pyarali M, Boyer RB, Mazal AT, Munoz N, Trevino RC, Schallert T, Thayer WP. Polyethylene glycol-fused allografts produce rapid behavioral recovery after ablation of sciatic nerve segments. J Neurosci Res. 2015;93:572–83. doi: 10.1002/jnr.23514.Google Scholar
  158. 158.
    Britt JM, Kane JR, Spaeth CS, Zuzek A, Robinson GL, Gbanaglo MY, Estler CJ, Boydston EA, Schallert T, Bittner GD. Polyethylene glycol rapidly restores axonal integrity and improves the rate of motor behavior recovery after sciatic nerve crush injury. J Neurophysiol. 2010;104(2):695–703. doi: 10.1152/jn.01051.2009.Google Scholar
  159. 159.
    Bittner GD, Keating CP, Kane JR, Britt JM, Spaeth CS, Fan JD, Zuzek RW, Thayer WP, Winograd JM, Gonzalez-Lima F, Schallert T. Rapid, effective, and long-lasting behavioral recovery produced by microsutures, methylene blue, and polyethylene glycol after completely cutting rat sciatic nerves. J Neurosci Res. 2012;90:967–80. doi: 10.1002/jnr.23023.Google Scholar
  160. 160.
    Sexton KW, Pollins AC, Cardwell NL, Del Corral GA, Bittner GD, Shack B, Nanney LB, Thayer WP. Hydrophilic polymers enhance early functional outcomes after nerve autografting. J Surg Res. 2012;177:392–400. doi: 10.1016/j.jss.2012.03.049.Google Scholar
  161. 161.
    Spaeth CS, Robison T, Fan JD, Bittner GD. Cellular mechanisms of plasmalemmal sealing and axonal repair by polyethylene glycol and methylene blue. J Neurosci Res. 2012;90:955–66.Google Scholar
  162. 162.
    Ghergherehchi CL, Bittner GD, Hastings RL, Mikesh M, Riley DC, Trevino RC, Schallert T, Thayer WP, Bhupanapadu Sunkesula SR, Ha TN, Munoz N, Pyrarali M, Bansal A, Poon AD, Mazal AT, Smith TA, Wong NS, Dunne PJ. Effects of extracellular calcium and surgical techniques on restoration of axonal continuity by polyethylene glycol fusion following complete cut or crush severance of rat sciatic nerves. J Neurosci Res. 2016;94:231–45. doi: 10.1002/jnr.23704.Google Scholar
  163. 163.
    Borgens RB, Shi R. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol. FASEB J. 2000;14(1):27–35.Google Scholar
  164. 164.
    Borgens RB, Shi R, Bohnert D. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol. 2002;205:1–12.Google Scholar
  165. 165.
    Duerstock BS, Borgens RB. Three-dimensional morphometry of spinal cord injury following polyethylene glycol treatment. J Exp Biol. 2002;205:13–24.Google Scholar
  166. 166.
    Borgens RB, Bohnert D. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol. J Neurosci Res. 2001;66(6):1179–86.Google Scholar
  167. 167.
    Koob AO, Duerstock BS, Babbs CF, Sun Y, Borgens RB. Intravenous polyethylene glycol inhibits the loss of cerebral cells after brain injury. J Neurotrauma. 2005;22(10):1092–111. doi: 10.1089/neu.2005.22.1092.Google Scholar
  168. 168.
    Smucker P, Hekmatyar SK, Bansal N, Rodgers RB, Shapiro SA, Borgens RB. Intravenous polyethyelene glycol successfully treats severe acceleration-induced brain injury in rats as assessed by magnetic resonance imaging. Neurosurgery. 2009;64:984–90. doi: 10.1227/01.NEU.0000342406.43816.13.Google Scholar
  169. 169.
    Laverty PH, Leskovar A, Breur GJ, Coates JR, Bergman RL, Widmer WR, Toombs JP, Shapiro S, Borgens RB. A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. J Neurotrauma. 2004;21(12):1767–77.Google Scholar
  170. 170.
    Shi R, Borgens RB, Blight AR. Functional reconnection of severed mammalian spinal cord axons with polyethylene glycol. J Neurotrauma. 1999:16(8). doi: 10.1089/neu.1999.16.727.CrossRefGoogle Scholar
  171. 171.
    Luo J, Borgens R, Shi R. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem. 2002;83(2):471–80. doi: 10.1046/j.1471-4159.2002.01160.x.Google Scholar
  172. 172.
    Cho Y, Shi R, Borgens R, Ivanisevic A. Repairing the damaged spinal cord and brain with nanomedicine. Small. 2008;4(10):1676–81. doi: 10.1002/smll.200800838.Google Scholar
  173. 173.
    Chen B, Zuberi M, Borgens RB, Cho Y. Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model. J Biol Eng. 2012;6(1):18. doi: 10.1186/1754-1611-6-18.Google Scholar
  174. 174.
    Cho Y, Shi R, Borgens RB. Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury. J Exp Biol. 2010;213:1513–20. doi: 10.1242/jeb.035162.Google Scholar
  175. 175.
    Cho Y, Shi R, Borgens RB, Ivanisevic A. Functionalized mesoporous silica nanoparticle-based drug delivery system to rescue acrolein-mediated cell death. Nanomedicine. 2008;3(4):507–19. doi: 10.2217/17435889.3.4.507.Google Scholar
  176. 176.
    Maskarinec SA, Hannig J, Lee RC, Lee KYC. Direct observation of poloxamer 188 insertion into lipid monolayers. Biophys J. 2002;82:1453–9.Google Scholar
  177. 177.
    Maskarinec SA, Lee KYC. Comparative study of poloxamer insertion into lipid monolayers. Langmuir. 2003;19:1809–15.Google Scholar
  178. 178.
    Wu G, Majewski J, Ege C, Kjaer K, Weygand MJ, Lee KYC. Interaction between lipid monolayers and poloxamer 188: an x-ray reflectivity and diffraction study. Biophys J. 2005;89:3159–73.Google Scholar
  179. 179.
    Frey SL, Zhang D, Carignano MA, Szleifer I, Lee KYC. Effects of block copolymer’s architecture on its association with lipid membranes: experiments and simulations. J Chem Phys. 2007;127:114904. doi: 10.1063/1.2768947.Google Scholar
  180. 180.
    Chang LC, Lin CY, Kuo MW, Gau CS. Interactions of pluronics with phospholipid monolayers at the air-water interface. J Colloid Interface Sci. 2005;285(2):640–52. doi: 10.1016/j.jcis.2004.11.011.Google Scholar
  181. 181.
    Chang LC, Chang YY, Gau SC. Interfacial properties of pluronics and the interactions between pluronics and cholesterol/DPPC mixed monolayers. J Colloid Interface Sci. 2008;322(1):263–73. doi: 10.1016/j.jcis.2008.02.051.Google Scholar
  182. 182.
    Adhikari U, Goliaei A, Tsereteli L, Berkowitz ML. Properties of poloxamer molecules and moloxamer micelles dissolved in water and next to lipid bilayers: results from computer simulations. J Phys Chem B. 2016 (in press) doi: 10.1021/acs.jpcb.5b11448.
  183. 183.
    Hadicke A, Blume A. Interactions of Pluronic block copolymers with lipid monolayers studied by epi-fluorescence microscopy and by adsorption experiments. J Colloid Interface Sci. 2013;407:327–38. doi: 10.1016/j.jcis.2013.06.041.Google Scholar
  184. 184.
    Wang JY, Chin J, Marks JD, Lee KY. Effects of PEO-PPO-PEO triblock copolymers on phospholipid membrane integrity under osmotic stress. Langmuir. 2010;26(15):12953–61. doi: 10.1021/la101841a.Google Scholar
  185. 185.
    Rabbel H, Werner M, Sommer JU. Interactions of amphiphilic triblock copolymers with lipid membranes: modes of interaction and effect on permeability examined by generic Monte Carlo simulations. Macromolecules. 2015;48(13):4724–32. doi: 10.1021/acs.macromol.5b00720.Google Scholar
  186. 186.
    Firestone MA, Wolf AC, Seifert S. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules. 2003;4(6):1539–49.Google Scholar
  187. 187.
    Wang JY, Marks J, Lee KYC. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation. Biomacromolecules. 2012;13:2616–23. doi: 10.1021/bm300847x.Google Scholar
  188. 188.
    Sharma V, Steve K, Murphy JC, Tung L. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation. Biophys J. 1996;71:3229–41.Google Scholar
  189. 189.
    Demina T, Grozdova I, Krylova O, Zhirnov A, Istratov V, Frey H, Kautz H, Melik-Nubarov N. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. Biochemistry. 2005;44(10):4042–54.Google Scholar
  190. 190.
    Oliveira J, Chen HF, Cho M, Lee RC. The copolymer surfactant P188 reduces tension in permeabilized cell membranes. Biophys J. 2011;100(3):326–7. doi: 10.1016/j.bpj.2010.12.1982.Google Scholar
  191. 191.
    Kerleta V, Andrlik I, Braunmuller S, Franke T, Wirth M, Gabor F. Poloxamer 188 supplemented culture medium increases the vitality of Caco-2 cells after subcultivation and freeze/thaw cycles. ALTEX. 2010;27(3):191–7.Google Scholar
  192. 192.
    Zhang Z, Al-Rubeai M, Thomas CR. Effect of pluronic F-68 on the mechanical properties of mammalian cells. Enzym Microb Technol. 1992;14(12):980–3. doi: 10.1016/0141-0229(92)90081-X.Google Scholar
  193. 193.
    Ramirez OT, Matharasan R. The role of the plasma membrane fluidity on the shear sensitivity of hydridomas grown under hydrodynamic stress. Biotechnol Bioeng. 1990;36(9):911–20. doi: 10.1002/bit.260360906.Google Scholar
  194. 194.
    Clarke MSF, Pritchard KA, Medow MS, McNeil PL. An atherogenic level of native LDL increases endothelial cell vulnerability to shear-induced plasma membrane wounding and consequent release of basic fibroblast growth factor. Endothelium: J Endothelial Cell Res. 1996;4(2):127–39. doi: 10.3109/10623329609024689.Google Scholar
  195. 195.
    Clarke MSF, Prendergast MA, Terry AV. Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats. Learn Mem. 1999;6:634–49. doi: 10.1101/lm.6.6.634.Google Scholar
  196. 196.
    Padanilam JT, Bischoff JC, Lee RC, Cravalho EG, Tompkins RG, Yarmush ML, Toner M. Effectiveness of poloxamer 188 in arresting calcein leakage from thermally damaged isolated skeletal muscle cells. Ann N Y Acad Sci. 1994;720:111–23. doi: 10.1111/j.1749-6632.1994.tb30439.x.Google Scholar
  197. 197.
    Lee RC, River LP, Pan FS, Ji L, Wollmann RL. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci U S A. 1992;89:4524–8.Google Scholar
  198. 198.
    Gu JH, Ge JB, Li M, Xu HD, Wu F, Qin ZH. Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier. PLoS One. 2013;8(4):e61641. doi: 10.1371/journal.pone.0061641.Google Scholar
  199. 199.
    Martindale JJ, Metzger JM. Uncoupling of increased cellular oxidative stress and myocardial ischemia reperfusion injury by directed sarcolemma stabilization. J Mol Cell Cardiol. 2014;67:26–37. doi: 10.1016/j.yjmcc.2013.12.008.Google Scholar
  200. 200.
    Greenebaum B, Blossfield K, Hannig J, Carrillo CS, Beckett MA, Weichselbaum RR, Lee RC. Poloxamer 188 prevents acute necrosis of adult skeletal muscle cells following high-dose irradiation. Burns. 2004;30:539–47. doi: 10.1016/j.burns.2004.02.009.Google Scholar
  201. 201.
    Mina EW, Lasagna-Reeves C, Glabe CG, Kayed R. Poloxamer 188 copolymer membrane sealent rescues toxicity of amyloid oligomers in vitro. J Mol Biol. 2009;391:577–85. doi: 10.1016/j.jmb.2009.06.024.Google Scholar
  202. 202.
    Matthews KL II, Aarsvold JN, Mintzer RA, Chen CT, Lee RC. Tc-99m pyrophosphate imaging of poloxamer-treated electroporated skeletal muscle in an in vivo rat muscle. Burns. 2006;32:755–64. doi: 10.1016/j.burns.2006.01.011.Google Scholar
  203. 203.
    Mbye LH, Keles E, Tao L, Zhang J, Chung J, Larvie M, Kopppula R, Lo EH, Whalen MJ. Kollidon VA64, a membrane-resealing agent, reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab. 2012;32:515–24.Google Scholar
  204. 204.
    Bao HJ, Wang T, Zhang MY, Liu R, Dai DK, Wang YQ, Wang L, Zhang L, Gao YZ, Qin ZH, Chen XP, Tao LY. Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem Res. 2012;37(12):2856–67.Google Scholar
  205. 205.
    Lee RC, Canaday DJ, Hammer SM. Transient and stable ionic permeabilization of isolated skeletal muscle cells after electrical shock. J Burn Care Rehabil. 1993;14(5):528–40.Google Scholar
  206. 206.
    Zhang R, Hunter RL, Gonzalez EA, Moore FA. Poloxamer 188 prolongs survival of hypotensive resuscitation and decreases vital tissue injury after full resuscitation. Shock. 2009;32(4):442–50.Google Scholar
  207. 207.
    Collins JM, Despa F, Lee RC. Structural and functional recovery of electropermeabilized skeletal muscle in-vivo after treatment with surfactant poloxamer 188. Biochim Biophys Acta. 1768;2007:1238–46. doi: 10.1016/j.bbamem.2007.01.012.CrossRefGoogle Scholar
  208. 208.
    Murphy AD, McCormack MC, Bichara DA, Nguyen JT, Randolph MA, Watkins MA, Lee RC, Austen WG. Poloxamer 188 protects against ischemia-reperfusion injury in a murine hind-limb model. Plast Reconstr Surg. 2010;125:1651–60. doi: 10.1097/PRS.0b013e3181ccdbef.Google Scholar
  209. 209.
    Tsoneva I, Iordanov I, Berger AJ, Tomov T, Nikolova B, Mudrov N, Berger MR. Electrodelivery of drugs into cancer cells in the presence of poloxamer 188. J Biomed Biotechnol. 2010;314213 doi: 10.1155/2010/314213.CrossRefGoogle Scholar
  210. 210.
    Walters TJ, Mase VJ, Roe JL, Dubick MA, Christy RJ. Poloxamer-188 reduces muscular edema after tourniquet-induced ischemia-reperfusion injury in rats. J Trauma. 2011;70(5):1192–7. doi: 10.1097/TA.0b013e318217879a.Google Scholar
  211. 211.
    Yuhua S, Ligen L, Jiake C, Tongzhu S. Effect of poloxamer 188 on deepening of deep second-degree burn wounds in the early stage. Burns. 2012;38:95–101.Google Scholar
  212. 212.
    Plataki M, Lee YD, Rasmussen DL, Hubmayr RD. Poloxamer 188 facilitates the repair of alveolus resident cells in ventilator-injured lungs. Am J Respir Crit Care Med. 2011;184(8):939–47. doi: 10.1164/rccm.201104-06470C.Google Scholar
  213. 213.
    Wang T, Chen X, Wang Z, Zhang M, Meng H, Gao Y, Luo B, Tao L, Chen Y. Poloxamer-188 can attenuate blood-brain barrier damage to exert neuroprotective effect in mice intracerebral hemorrhage model. J Mol Neurosci. 2015;55(1):240–50. doi: 10.1007/s12031-014-0313-8.Google Scholar
  214. 214.
    Tharmalingam T, Ghebeh H, Wuerz T, Butler M. Pluronic enhances the robustness and reduces the cell attachment of mammalian cells. Mol Biotechnol. 2008;39:167–77. doi: 10.1007/s12033-008-9045-8.Google Scholar
  215. 215.
    Hellung-Larsen P, Assaad F, Pankratova S, Saietz BL, Skovgaard LT. Effects of pluronic F-68 on tetrahymena cells: protection against chemical and physical stress and prolongation of survival under toxic conditions. J Biotechnol. 2000;76(2–3):185–95. doi: 10.1016/s0168-1656(99)00188-1.Google Scholar
  216. 216.
    Grindel JM, Jaworski T, Piraner O, Emanuele RM. Balasubramanian. Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans. J Pharm Sci. 2002;90(9):1936–47.Google Scholar
  217. 217.
    Liu-Snyder P, Logan MP, Shi R, Smith DT, Borgens RB. Neuroprotection from secondary injury by polyethylene glycol requires its internalization. J Exp Biol. 2007;210:1455–62.Google Scholar
  218. 218.
    Gigout A, Buschmann MD, Jolicoeur M. The fate of pluronic F-68 in chondrocytes and CHO cells. Biotechnol Bioeng. 2008;100(5):975–87. doi: 10.1002/bit.21840.Google Scholar
  219. 219.
    Sobczynski J, Kristensen S, Berg K. The influence of pluronics nanovehicles on dark cytotoxicity, photocytotoxicity and localization of four model photosensitizers in cancer cells. Photochem Photobiol Sci. 2014;13:8–22. doi: 10.1039/C3PP50181G.Google Scholar
  220. 220.
    Serbest G, Horwitz J, Barbee K. The effect of poloxamer-188 on neuronal cell recovery from mechanical injury. J Neurotrauma. 2005;22(1):119–32.Google Scholar
  221. 221.
    Kilinc D, Gallo G, Barbee K. Poloxamer 188 reduces axonal beading following mechanical trauma to cultured neurons. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007;5395–53983.Google Scholar
  222. 222.
    Luo CL, Chen XP, Li LL, Li QQ, Li BX, Xue AM, Xu HF, Dai DK, Shen YW, Tao LY, Zhao ZQ. Poloxamer 188 attenuates in vitro traumatic brain injury-induced mitochondrial and lysosomal membrane permeabilization damage in cultured primary neurons. J Neurotrauma. 2013;30:597–607. doi: 10.1089/neu.2012.2425.Google Scholar
  223. 223.
    Shelat PB, Plant LD, Wang JC, Lee E, Marks JD. The membrane-active tri-block copolymer Pluronic F-68 profoundly rescues rat hippocampal neurons from oxygen-glucose deprivation-induced death through early inhibition of apoptosis. J Neurosci. 2013;33(30):12287–99. doi: 10.1523/JNEUROSCI.5731-12.2013.Google Scholar
  224. 224.
    Merchant FA, Holmes WH, Capelli-Schellpfeffer M, Lee RC, Toner M. Poloxamer 188 enhances functional recovery of lethally heat-shocked fibroblasts. J Surg Res. 1998;74:131–40.Google Scholar
  225. 225.
    Watanabe M, Okada T. Lysophosphatidylcholine-induced myocardial damage is inhibited with poloxamer 188 in isolated rat heart. Mol Cell Biochem. 2003;248(1–2):209–15.Google Scholar
  226. 226.
    Phillips DM, Haut RC. The use of a non-ionic surfactant (P188) to save chondrocytes from necrosis following impact loading of chondral explants. J Orthop Res. 2004;22:1135–42.Google Scholar
  227. 227.
    Natoli FM, Athanasiou KA. P188 reduces cell death and IFG-I reduces GAG release following single-impact loading of articular cartilage. J Biomech Eng. 2008;130(4):041012. doi: 10.1115/1.2939368.Google Scholar
  228. 228.
    Bajaj S, Shoemaker T, Hakimiyan AA, Rappoport L, Pascual-Garrido C, Oegema TR, Wimmer MA. Chubinskaya. Protective effect of P188 in the model of acute trauma to human ankle cartilage: the mechanism of action. J Orthop Trauma. 2010;24(9):571–6. doi: 10.1097/BOT.0b013e3181ec4712.Google Scholar
  229. 229.
    Luo C, Li Q, Gao Y, Shen X, Ma Lu WQ, Wang Z, Zhang M, Zhao Z, Chen X, Tao L. Poloxamer 188 attenuates cerebral hypoxia/ischemia injury in parallel with preventing mitochondrial membrane permeabilization and autophagic activation. J Mol Neurosci. 2015;56:988–98. doi: 10.1007/s12031-015-0568-8.Google Scholar
  230. 230.
    Yasuda S, Townsend D, Michele DE, Favre EG, Day SM, Metzger JM. Dystrophic heart failure blocked by membrane sealant poloxamer. Nature. 2005;436:1025–9. doi: 10.1038/nature03844.Google Scholar
  231. 231.
    Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, Bett GCL, Rasmusson RL, Denning C, Yang L. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech. 2015;8:457–66. doi: 10.1242/dmm.019505.Google Scholar
  232. 232.
    Spurney CF, Guerron AD, Yu Q, Sali A, van der Meulen JH, Hoffman EP, Nagaraju K. Membrane sealant poloxamer P188 protects against isoproterenol induced cardiomyopathy in dystrophin deficient mice. BMC Cardiovasc Disord. 2011;11:20. doi: 10.1186/1471-2261-11-20.Google Scholar
  233. 233.
    Quinlan JG, Wong BL, Niemeier RT, McCullough AS, Levin L, Emanuele M. Poloxamer 188 failed to prevent exercise-induced membrane breakdown in mdx skeletal muscle fibers. Neuromuscul Disord. 2006;16:855–64.Google Scholar
  234. 234.
    Ng R, Metzger JM, Claflin DR, Faulkner JA. Poloxamer 188 reduces the contraction-induced force decline in lubrical muscles form mdx mice. Am J Physiol Cell Physiol. 2008;295:C145–50. doi: 10.1152/ajpcell.00017.2008.Google Scholar
  235. 235.
    Suzuki N, Akiyama T, Takahashi T, Komuro H, Warita H, Tateyama M, Itoyama Y, Aoki M. Continuous administration of poloxamer 188 reduces overload-induced muscular atrophy in dysferlin-deficient SJL mice. Neurosci Res. 2012;72:181–6. doi: 10.1016/j.neures.2011.10.005.Google Scholar
  236. 236.
    Terry RL, Kaneb HM, Wells DJ. Poloxamer 188 has a deleterious effect on dystrophic skeletal muscle function. PLoS One. 2014;9(3):e91221. doi: 10.1371/journal.pone.0091221.Google Scholar
  237. 237.
    Markham BE, Kernodle S, Nemzek J, Wilkinson JE, Sigler R. Chronic dosing with membrane sealant poloxamer 188 NF improves respiratory dysfunction in dystrophic mdx and mdz/utrophin −/− mice. PLoS One. 2015;10(8):e0134832. doi: 10.1371/journal.pone.0134832.Google Scholar
  238. 238.
    Townsend D, Turner I, Yasuda S, Martindale J, Davis J, Shillingofrd M, Kornegay JN, Metzger JM. Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilation in dystrophic dogs. J Clin Invest. 2010;120(4):1140–50. doi: 10.1172/JCI41329.Google Scholar
  239. 239.
    Papoutsakis ET. Fluid-mechanical damage of animal cells in bioreactors. Trends Biotechnol. 1991;9(1):427–37. doi: 10.1016/0167-7799(91)90145-8.Google Scholar
  240. 240.
    Zhang S, Handa-Corrigan A, Spier RE. Foaming and media surfactant effects on the cultivation of animal cells in stirred and sparged bioreactors. J Biotechnol. 1992;25(3):289–306. doi: 10.1016/0168-1656(92)90162-3.Google Scholar
  241. 241.
    Wu J. Mechanims of animal cell damage associated with gas bubbles and cell protection by medium additives. J Biotechnol. 1995;43(2):81–94. doi: 10.1016/0168-1656(95)00133-7.Google Scholar
  242. 242.
    Ma N, Chalmers JJ, Aunins JG, Zhou W, Xie L. Quantitative studies of cell-bubble interactions and cell damage at different pluronic F-68 and cell concentrations. Biotechnol Prog. 2004;20(4):1183–91. doi: 10.1021/bp0342405.Google Scholar
  243. 243.
    Hu W, Berdugo C, Chalmers JJ. The potential of hydrodynamic damage to animal cells of industrial relevance: current understanding. Cytotechnology. 2011;63:445–60. doi: 10.1007/s10616-011-9368-3.Google Scholar
  244. 244.
    Sieblist C, Jenzsch M, Pohlscheidt M. Influence of pluronic F68 on oxygen mass transfer. Biotechnol Prog. 2013;29(5):1278–88. doi: 10.1002/btpr.1770.Google Scholar
  245. 245.
    Tharmalingam T, Goudar CT. Evaluating the impact of high pluronic F68 concentrations on antibody producing CHO cell lines. Biotechnol Bioeng. 2015;112(4):832–7. doi: 10.1002/bit.25491.Google Scholar
  246. 246.
    Clinke MF, Guedon E, Yen FT, Ogier V, Roitel O, Goergen JL. Effect of surfactant pluronic F-68 on CHO cell growth, metabolism, production, and glycosylation of human recombinant IFN-gamma in mild operating conditions. Biotechnol Prog. 2010;27(1):181–90. doi: 10.1002/btpr.503.Google Scholar
  247. 247.
    Bentley PK, Gates RMC, Lowe KC, de Pomerai DI, Walker JAL. In vitro cellular responses to a non-ionic surfactant, pluronic F-68. Biotechnol Lett. 1989;11(2):111–4.Google Scholar
  248. 248.
    Hockett SD, Cuenin MF, O’Neal RB, Brennan WA, Strong SL, Runner RR, McPherson JC, Van Dyke TE. Pluronic polyol effects on human gingival fibroblast attachment and growth. J Periodontol. 2000;71(5):803–9. doi: 10.1902/jop.2000.71.5.803.Google Scholar
  249. 249.
    Mizrahi A. Pluronic polyols in human lymphocyte cell line cultures. J Clin Microbiol. 1975;2(1):11–3.Google Scholar
  250. 250.
    Sengupta A, Dwivedi N, Kelly SC, Tucci L, Thadhani NN, Prausnitz MR. Poloxamer surfactant preserves cell viability during photoacoustic delivery of molecules into cells. Biotechnol Bioeng. 2014;112(2):405–15. doi: 10.1002/bit.25363.Google Scholar
  251. 251.
    Clarke MSF, McNeil PL. Syringe loading introduces macromolecules into living mammalian cell cytosol. J Cell Sci. 1992;102:533–41.Google Scholar
  252. 252.
    Gonzalez Hernandez Y, Fischer RW. Serum-free culturing of mammalian cells—adaptation to and cryopreservation in fully defined media. ALTEX. 2007;24(2):110–6.Google Scholar
  253. 253.
    Medina MA III, Nguyen JT, McCormack MM, Randolph MA, Austen WG Jr. A high-throughput model for fat graft assessment. Lasers Surg Med. 2009;41:738–44. doi: 10.1002/lsm.20874.Google Scholar
  254. 254.
    Medina MA III, Nguyen JT, Kirkham JC, Lee JH, McCormack MC, Randolph MA, Austen WJ Jr. Polymer therapy: a novel treatment to improve fat graft viability. Plast Reconstr Surg. 2011;127:2270–82. doi: 10.1097/prs.0b013e3182139fc1.Google Scholar
  255. 255.
    Hymes AC, Safavian MH, Gunther T. The influence of an industrial surfactant pluronic F-68, in the treatment of hemorrhagic shock. J Surg Res. 1971;11(4):191–7.Google Scholar
  256. 256.
    Mayer DC, Strada SJ, Hoff C, Hunter RL, Artman M. Effects of poloxamer 188 in a rabbit model of hemorrhagic shock. Ann Clin Lab Sci. 1994;24(4):302–11.Google Scholar
  257. 257.
    Justicz AG, Farnsworth WV, Soberman MS, Tuvlin MB, Bonner GD, Hunter RL, Martino-Saltzman D, Sink JD, Austin GE. Reduction of myocardial infarct size by poloxamer 188 and mannitol in a canine model. Am Heart J. 1991;122(3):671–80. doi: 10.1016/0002-8703(91)90510-O.Google Scholar
  258. 258.
    Schaer GL, Hursey TL, Abrahams SL, Buddemeier K, Ennis B, Rodriguez R, Hubbell JP, Moy J, Parrillo JE. Reduction in reperfusion-induced myocardial necrosis in dogs by RheothRx injection (poloxamer 188 N.F.), a hemorheological agent that alters neutrophil function. Circulation. 1994;90:2964–75.Google Scholar
  259. 259.
    Juneman EB, Saleh L, Lancaster JJ, Thai HM, Markham B, Goldman S. The effects of poloxamer-188 on left ventricular function in chronic heart failure after myocardial infarction. J Cardiovasc Pharmacol. 2012;60(3):292–8.Google Scholar
  260. 260.
    Colbassani HJ, Barrow DL, Sweeney KM, Bakay RA, Check IJ, Hunter RL. Modification of acute focal ischemia in rabbits by poloxamer 188. Stroke. 1989;20(9):1241–6.Google Scholar
  261. 261.
    Hunter RL, Luo AZ, Zhang R, Kozar RA, Moore FA. Poloxamer 188 inhibition of ischemia/reperfusion injury: evidence for a novel anti-adhesive mechanism. Ann Clin Lab Sci. 2010;40(2):115–25.Google Scholar
  262. 262.
    Mezrow CK, Mazzoni M, Wolfe D, Shiang HH, Litwak RS, Griepp RB. Poloxamer 188 improves neurologic outcome after hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1992;103(6):1143–6.Google Scholar
  263. 263.
    Baskaran H, Toner M, Yarmush ML, Berthiaume F. Poloxamer-188 improves capillary blood flow and tissue viability in a cutaneous burn wound. J Surg Res. 2001;101:56–61. doi: 10.1006/jsre.2001.6262.Google Scholar
  264. 264.
    Baars DC, Rundell SA, Haut RC. Treatment with the non-ionic surfactant poloxamer P1878 reduces DNA fragmentation in cells from bovine chondral explants exposed to injurious unconfined compression. Biomech Model Mechanobiol. 2006;5:133–9. doi: 10.1007/s10237-006-0024-3.Google Scholar
  265. 265.
    Rundell SA, Baars DC, Phillips DM, Haut RC. The limitation of acute necrosis in retro-patellar cartilage after a severe blunt impact to the in vivo rabbit patello-femoral join. J Orthop Res. 2005;23:1363–9.Google Scholar
  266. 266.
    Borgens RB, Dohnert D, Duerstock B, Spomar D, Lee RC. Subcutaneous tri-block copolymer produces recovery from spinal cord injury. J Neurosci Res. 2004;76:141–54. doi: 10.1002/jnr.20053.Google Scholar
  267. 267.
    Misra A, Kondaveeti P, Nissanov J, Barbee K, Shewokis P, Rioux L, Moxon KA. Preventing neuronal damage and inflammation in vivo during cortical microelectrode implantation through the use of poloxamer P-188. J Neural Eng. 2013;10(1):016011. doi: 10.1088/1741-2560/10/1/016011.Google Scholar
  268. 268.
    Frim DM, Wright DA, Curry DJ, Cromie W, Lee R, Kang UJ. The surfactant poloxamer-188 protects against glutamate toxicity in the rat brain. Neuroreport. 2004;15:171–4. doi: 10.1097/01.wnr.0000107521.38715.68.Google Scholar
  269. 269.
    Curry DJ, Wright DA, Lee RC, Kang UJ, Frim DM. Surfactant poloxamer 188-related decreases in inflammation and tissue damage after experimental brain injury in rats. J Neurosurg. 2004;101(1):91–6.Google Scholar
  270. 270.
    Curry DJ, Wright DA, Lee RC, Kang UJ, Frim DM. Poloxamer 188 volumetrically decreases neuronal loss in the rat in time-dependent manner. Neurosurgery. 2004;55:943–9. doi: 10.1227/01.NEU.0000137890.29862.2C.Google Scholar
  271. 271.
    Emanuele RM. FLOCOR: a new anti-adhesive, rheological agent. Expert Opin Investig Drugs. 1998;7(7):1193–200.Google Scholar
  272. 272.
    Hunter RL, Padadea C, Gallagher CJ, Finlayson DC, Check IJ. Increased whole blood viscosity during coronary artery bypass surgery. Studies to evaluate the effects of soluble fibrin and poloxamer 188. Thromb Haemost. 1990;63(1):6–12.Google Scholar
  273. 273.
    Ahmed F, Alexandridis P, Neelamegham S. Synthesis and application of fluorescein-labeled pluronic block copolymers to the study of polymer-surface interactions. Langmuir. 2001;17(2):537–46. doi: 10.1021/la001305u.Google Scholar
  274. 274.
    Grover FL, Heron MW, Newman MM, Paton BC. Effect of a nonionic surface-active agent on blood viscosity and platelet adhesiveness. Circulation. 1969;39(5):I249–52.Google Scholar
  275. 275.
    Ahmed F, Alexandridis P, Neelamegham S. Pluronic block copolymers inhibit platelet aggregation: role of critical micelle concentration & side chain length. Proceedings First Joint BMES/EMBS Conference 1999 doi: 10.1109/IEMBS.1999.803878
  276. 276.
    Smith CM 2nd, Hebbel RP, Tukey DP, Clawson CC, White JG, Vercellotti GM. Pluronic F-68 reduces the endothelial adherence and improves the rheology of liganded sickle erythrocytes. Blood. 1987;69(6):1631–6.Google Scholar
  277. 277.
    Armstrong JK, Meiselman HJ, Fischer TC. Inhibition of red blood cell-induced platelet aggregation in whole blood by a nonionic surfactant, poloxamer 188 (Rheothrx injection). Thromb Res. 1995;79(5–6):437–50.Google Scholar
  278. 278.
    Sandor B, Marin M, Lapoumeroulie C, Rabai M, Lefevre SD, Lemonne N, El Nemer W, Mozar A, Francais O, Le Pioufle B, Connes P, Le Van Kim C. Effects of poloxamer 188 on red blood cell membrane properties in sickle cell anaemia. Br J Haematol. 2016; doi: 10.1111/bjh.13937.CrossRefGoogle Scholar
  279. 279.
    Ketchum LD, Wennen WW, Masters FW, Robinson DW. Experimental use of pluronic F68 in microvascular surgery. Plast Reconstr Surg. 1974;53(3):288–92.Google Scholar
  280. 280.
    Adams-Graves P, Kedar A, Koshy M, Steinberg M, Veith R, Ward D, Crawford R, Edwards S, Bustrack J, Emanuele M. RheothRx (poloxamer 188) injection for the acute painful episode of sickle cell disease: a pilot study. Blood. 1997;90(5):2041–6.Google Scholar
  281. 281.
    Orringer EP, Casella JF, Ataga KI, Koshy M, Adams-Graves P, Luchtman-Jones L, Wun T, Watanabe M, Shafer F, Kutlar A, Abboud M, Steinberg M, Adler B, Swerdlow P, Terregino C, Saccente S, Files B, Ballas S, Brown R, Wojtowicz-Praga S, Grindel JM. Purified poloxamer 188 for treatment of acute vaso-occlusive crisis of sickle cell disease: a randomized controlled trial. JAMA. 2001;286(17):2099–106. doi: 10.1001/jama.286.17.2099.Google Scholar
  282. 282.
    Schaer GL, Spaccavento LJ, Browne KF, Krueger KA, Krichbaum D, Phelan JM, Fletcher WO, Grines CL, Edwards S, Jolly MK, Gibbons RJ. Beneficial effects of RheothRx injection in patients receiving thrombolytic therapy for acute myocardial infarction. Circulation. 1996;94:298–307. doi: 10.1161/01.CIR.94.3.298.Google Scholar
  283. 283.
    O’Keefe JH, Grines CL, DeWood MA, Schaer GL, Browne K, Magorien RD, Kalbfleisch JM, Fletcher WO, Bateman TM, Gibbons RJ. Poloxamer-188 as an adjunct to primary percutaneous transluminal coronary angioplasty for acute myocardial infarction. Am J Cardiol. 1996;78:747–50.Google Scholar
  284. 284.
    Study Group CORE. Effects of RheothRx on mortality, morbidity, left ventricular function, and infarct size in patients with acute myocardial infarction. Collaborative Organization for RheothRx Evaluation (CORE). Circulation. 1997;96(1):192–201.Google Scholar
  285. 285.
    Maynard C, Swenson R, Paris JA, Martin JS, Hallstrom AP, Cerqueira MD, Weaver WD. Randomized, controlled trial of RheothRX (poloxamer 188) in patients with suspected acute myocardial infarction. RheothRx in myocardial infarction study group. Am Heart J. 1998;135(1):797–804.Google Scholar
  286. 286.
    Emanuele M, Balasubramaniam B. Differential effects of commercial-grade and purified poloxamer 188 on renal function. Drugs in R&D. 2014;14(2):73–83. doi: 10.1007/s40268-014-0041-0.Google Scholar
  287. 287.
    Rudt S, Muller RH. In vitro phagocytosis assay of nano- and microparticles by chemiluminescence. II. Effect of surface modification by coating of particles with poloxamer on the phagocytic uptake. J Control Release. 1993;25(1–2):51–9. doi: 10.1016/0168-3659(93)90094-L.Google Scholar
  288. 288.
    Zhang W, Liu J, Li S, Chen M, Liu H. Preparation and evaluation of stealth Tashinone IIA-loaded solid lipid nanoparticles: influence of poloxamer 188 coating on phagocytic uptake. J Microencapsulation: Micro and Nano Carriers. 2008;25(3):203–9. doi: 10.1080/02652040701852181.Google Scholar
  289. 289.
    Jewell RC, Khor SP, Kisor DF, LaCroix KAK, Wargin WA. Pharmacokinetics of RheothRx injection in healthy human male volunteers. J Pharm Sci. 1997;86(7):808–12.Google Scholar
  290. 290.
    Moghimi SM, Hunter AC, Dadswell CM, Savay S, ALving CR, Szebeni J. Causitive factors behind poloxamer 188 (Pluronic F68, Flocor)-induced complement activation in human sera. A protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels. Biochim Biophys Acta. 2004;1689(2):103–13. doi: 10.1016/j.bbadis.2004.02.005.Google Scholar
  291. 291.
    Wilcox ML, Newman MM, Paton BC. A study of labeled pluronic F-68 after intravenous injection into the dog. J Surg Res. 1978;25(4):349–56. doi: 10.1016/0022-4804(78)90130-0.Google Scholar
  292. 292.
    Hunter AC, Moghimi SM. Therapeutic synthetic polymers: a game of Russian roulette? Drug Discov Today. 2002;7(19):998–1001.Google Scholar
  293. 293.
    Takats Z, Vekey K, Hegedus L. Qualitative and quantitative determination of poloxamer surfactants by mass spectroscopy. Rapid Commun Mass Spectrom. 2001;15(10):805–10.Google Scholar
  294. 294.
    Lane TA, Krukonis V. Reduction in the toxicity of a component of an artificial blood substitute by supercritical fluid fractionation. Transfusion. 1988;28(4):357–78. doi: 10.1046/j.1537-2995.1988.2848826527.CrossRefGoogle Scholar
  295. 295.
    Bentley PK, Davis SS, Johnson OL, Lowe KC, Washington C. Purification of Pluronic F-68 for perfluorochemical emulsification. J Pharm Pharmacol. 1989;41(9):661–3. doi: 10.1111/j.2042-7158.1989.tb06555.x.Google Scholar
  296. 296.
    Edwards CM, Gambaretto GP, Conte L, Lowe KC. Evaluation of commercial and purified Pluronic F-68 in a human blood neutrophil bioassay. Artif Cells, Blood Substit Biotechnol. 1999;27(2):171–7.Google Scholar
  297. 297.
    Guan B, Ali A, Peng H, Hu W, Markely LR, Estes S, Prajapati S. Characterization of poloxamers by reversed-phase liquid chromatography. Anal Methods. 2016;8:2812–9. doi: 10.1039/c5ay03311j.Google Scholar
  298. 298.
    “Investigation of low viability in sparged bioreactor CHO cell cultures points to variability in the Pluronic F-68 shear protecting component of cell culture media,” Biochem Eng J. 98:10–17. doi: 10.1016/j.bej.2015.01.013.
  299. 299.
    Peng H, Hall KM, Clayton B, Wiltberger K, Hu W, Hughes E, Kane J, Ney R, Ryll T. Development of small scale cell culture models for screening poloxamer 188 lot-to-lot variation. Biotechnol Prog. 2014;30(6):1411–8. doi: 10.1002/btpr.1967.Google Scholar
  300. 300.
    Gallet G, Carroccio S, Rizzarelli P, Karlsson S. Thermal degradation of poly(ethylene oxide-propylene oxide-ethylene oxide) triblock copolymer: comparative study by SEC/NMR, SEC/MALDI-TOF-MS and SPME/GC-MS. Polymer. 2002;43:1081–94.Google Scholar
  301. 301.
    Gallet G, Erlandsson B, Albertsson AC, Karlsson S. Thermal oxidation of poly(ethylene oxide-propylene oxide-ethylene oxide) triblock copolymer: focus on low molecular weight degradation products. Polym Degrad Stab. 2002;77:55–66.Google Scholar
  302. 302.
    BASF Technical Information, 2013, “Kolliphor P Grades,” 03_111136e-03, downloaded from www.pharma-ingredients.basf.com/Products.aspx?PRD=30554048 on Dec. 21, 2015.
  303. 303.
    Erlandsson B. Stability-indicating changes in poloxamers: the degradation of ethylene oxide-propylene oxide block copolymers at 25 and 40 °C. Polym Degrad Stab. 2002;78:571–5.Google Scholar
  304. 304.
    Sandez-Macho I, Casas M, Lage EV, Rial-Hermida I, Concheiro A, Alvarez-Lorenzo C. Interaction of poloxamine block copolymers with lipid membranes: role of copolymer structure and membrane cholesterol content. Colloids Surf B: Biointerfaces. 2015;133:270–7. doi: 10.1016/j.colsurfb.2015.06.019.Google Scholar
  305. 305.
    Buhler V, 2008, Kollidon—polyvinylpyrrolidone excipients for the pharmaceutical industry, 9th revised edition, BASF SE.Google Scholar
  306. 306.
    Miller BF, Keles E, Tien L, Zhang J, Kaplan D, Lo EH, Whalen MJ. The pharmacokinetics and pharmacodynamics of Kollidon VA64 dissociate its protective effects from membrane resealing after controlled cortical impact in mice. J Cereb Blood Flow Metab. 2014;34(8):1347–53. doi: 10.1038/jcbfm.2014.89.Google Scholar
  307. 307.
    Cho Y, Shi R, Borgens RB. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J Biol Eng. 2010;4 doi: 10.1186/1754-1611-4-2.CrossRefGoogle Scholar
  308. 308.
    Pavinatto FJ, Pavinatto A, Caseli L, dos Santos Jr DS, Nobre TM, Zaniquelli MED, Oliveira ON Jr. Interaction of chitosan with cell membrane models at the air-water interface. Biomacromolecules. 2007;8(5):1633–40. doi: 10.1021/bm0701550.Google Scholar
  309. 309.
    Pavinatto FJ, Caseli L, Pavinatto A, dos Santos Jr DS, Nobre TM, Zaniquelli MED, Silva HS, Miranda PB, de Oliveira Jr ON. Probing chitosan and phospholipid interactions using Langmuir and Langmuir-Blodgett films as cell membrane models. Langmuir. 2007;23(14):7666–71. doi: 10.1021/la700856a.Google Scholar
  310. 310.
    Amado E, Kerth A, Blume A, Kressler J. Infrared reflection absorption spectroscopy coupled with Brewster angle microscopy for studying interactions of amphiphilic triblock copolymers with phospholipid monolayers. Langmuir. 2008;24(18):10041–53. doi: 10.1021/la801768m.Google Scholar
  311. 311.
    Amado E, Blume A, Kressler J. Novel non-ionic block copolymers tailored for interactions with phospholipids. React Funct Polym. 2009;69(7):450–6. doi: 10.1016/j.reactfunctpolym.2008.12.021.Google Scholar
  312. 312.
    Schwieger C, Achilles A, Scholz S, Ruger J, Bacia K, Saalwaechter K, Kressler J, Blume A. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties. Soft Matter. 2014;10:6147–60. doi: 10.1039/c4sm00830h.Google Scholar
  313. 313.
    Schwieger C, Blaffert J, Li Z, Kressler J, Blume A. Perfluorinated moieties increase the interaction of amphiphilic block copolymers with lipid monolayers. Langmuir. 2016;32(32):8102–15. doi: 10.1021/acs.langmuir.6b01574.Google Scholar
  314. 314.
    Cho Y, Shi R, Ivanisevic A, Borgens RB. Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury. J Neurosci Res. 2010;88(7):1433–44.Google Scholar
  315. 315.
    Shi Y, Kim S, Huff TB, Borgens RB, Park K, Shi R, Cheng JX. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nat Nanotechnol. 2009;5:80–7. doi: 10.1038/nnano.2009.303.Google Scholar
  316. 316.
    Agarwal J, Walsh A, Lee RC. Multimodal strategies for resuscitating injured cells. N Y Acad Sci. 2005;1066:295–309. doi: 10.1196/annals.1363.027.Google Scholar
  317. 317.
    Frey SL, Lee KY. Temperature dependence of poloxamer insertion into and squeeze-out from lipid monolayers. Langmuir. 2007;23(5):2631–7.Google Scholar
  318. 318.
    Cheng CY, Oolijve LLC, Kausik R, Han S. Cholesterol enhances surface water diffusion of phospholipid bilayers. J Chem Phys. 2014;141:22D513. doi: 10.1063/1.4897539.Google Scholar
  319. 319.
    Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41(1):66–97. doi: 10.1016/S0163-7827(01)00020-0.Google Scholar
  320. 320.
    Espinosa-Marzal RM, Fontani G, Reusch FB, Roba M, Spencer ND, Crockett R. Sugars communicate through water: oriented glycans induce water structuring. Biophys J. 2013;104(12):2686–94. doi: 10.1016/j.bpj.2013.05.017.Google Scholar
  321. 321.
    Bamba R, Riley DC, Kelm ND, Does MD, Dortch RD, Thayer WP. A novel technique using hydrophilic polymers to promote axonal fusion. Neural Regen Res. 2016;11(4):525–8. doi: 10.4103/1673-5374.180724.Google Scholar
  322. 322.
    Venketesh S, Dayananda C. Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol. 2008;28:57–82. doi: 10.1080/07388550801891152.Google Scholar
  323. 323.
    Lau WL, Ege DS, Lear JD, Hammer DA, DeGrado WF. Oligomerization of fusogenic peptides promotes membrane fusion by enhancing membrane destabilization. Biophys J. 2004;86:272–84.Google Scholar
  324. 324.
    Pecheur EI, Hoekstra D, Sainte-Marie J, Maurin L, Bienvenue A, Philippot JR. Membrane anchorage brings about fusogenic properties in a short synthetic peptide. Biochemistry. 1997;36:3773–81.Google Scholar
  325. 325.
    Clarke MW, Boddington KF, Warnica JM, Atkinson J, McKenna S, Madge J, Barker CH, Graether SP. Structural and functional insights into the cryoprotection of membranes by the intrinsically disordered dehydrins. J Biol Chem. 2015;290(45):26900–13. doi: 10.1074/jbM115.678219.Google Scholar

Copyright information

© The Regenerative Engineering Society 2017

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of ChicagoChicagoUSA
  2. 2.Department of Organismal Biology and Anatomy, Committee on Molecular Medicine, and Institute for Molecular EngineeringUniversity of ChicagoChicagoUSA

Personalised recommendations