Skip to main content

Advertisement

Log in

Treatments of Meniscus Lesions of the Knee: Current Concepts and Future Perspectives

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

The present preference in the clinical management of meniscus lesions is to preserve it by repairing whenever possible or substituting the tissue. Still, meniscectomy continues to be one of the most frequent orthopedic procedures regardless of the fact that it may lead to a series of early degenerative events in the knee. Surgical and technological advances enabled to extend the indications for meniscus repair. The outcome of meniscus repair is influenced by several factors. Classification of meniscus lesions remains a challenge while there have been some attempts in building consensus around it. Substitution of meniscus tissue has been performed to avoid or minimize the possible degenerative effects occurring in the absence of meniscus. Meniscus allograft transplantation has demonstrated its use as a replacement strategy of large lesions. In partial lesions, the use of acellular scaffolds has provided an improved clinical outcome when the insertional horns and the peripheral rim are preserved. However, the current scaffolds have shown some limitations, and the neotissue is different from the native meniscus. Tissue engineers thus envision going beyond the partial meniscus regeneration. Nowadays, it is aimed to develop a new generation of meniscal implants for total meniscus regeneration, which not only meet the biomechanical requirements but also the biological requirements both in the short- and long-term. Moreover, these might be patient/injury-specific regarding the size and shape as well as being cultivated with autologous cells and biologically enhanced. Herein, the clinical management of meniscus lesions and advanced tissue engineering strategies are reviewed.

Lay Summary

Meniscus injuries are the most frequent injuries in the knee. Given the increased understanding of the consequences of meniscectomy, which is still one of the most frequent orthopedic procedures, the clinical management of meniscus changed towards favoring repair or substitution. The future of meniscus substitution and regeneration is strongly supported by the clinical need. This study reviews the current concepts and provides future perspectives on the clinical management of meniscus lesions, and tissue engineering and regenerative medicine strategies to update and guide researchers and surgeons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Greis PE, Bardana DD, Holmstrom MC, Burks RT. Meniscal injury: I. Basic science and evaluation. J Am Acad Orthop Surg. 2002;10(3):168–76.

    Article  Google Scholar 

  2. Brindle T, Nyland J, Johnson DL. The meniscus: review of basic principles with application to surgery and rehabilitation. J Athl Train. 2001;36(2):160.

    Google Scholar 

  3. Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Basics of the meniscus. Regenerative strategies for the treatment of knee joint disabilities. USA: Springer; 2017. p. 237–47.

    Book  Google Scholar 

  4. Pereira H, Cengiz IF, Silva-Correia J, Cucciarini M, Gelber PE, Espregueira-Mendes J et al. Histology-ultrastructure-biology. In: Hulet C, Pereira H, Peretti G, Denti M, editors. Surgery of the meniscus. Berlin, Heidelberg: Springer Berlin Heidelberg 2016. p. 23-33.

  5. Mcdevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res. 1990;252:8–18.

    Google Scholar 

  6. Tudor F, McDermott ID, Myers P. Meniscal repair: a review of current practice. Orthopaedics and Trauma. 2014;28(2):88–96.

    Article  Google Scholar 

  7. Sanchez-Adams J, Athanasiou KA. The knee meniscus: a complex tissue of diverse cells. Cell Mol Bioeng. 2009;2(3):332–40.

    Article  Google Scholar 

  8. Verdonk PC, Forsyth R, Wang J, Almqvist KF, Verdonk R, Veys EM, et al. Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil. 2005;13(7):548–60.

    Article  Google Scholar 

  9. Pereira H, Caridade SG, Frias AM, Silva-Correia J, Pereira DR, Cengiz IF, et al. Biomechanical and cellular segmental characterization of human meniscus: building the basis for tissue engineering therapies. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 2014;22(9):1271–81.

    Article  Google Scholar 

  10. Cengiz IF, Pereira H, Pêgo JM, Sousa N, Espregueira-Mendes J, Oliveira JM et al. Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee. Journal of Tissue Engineering and Regenerative Medicine. 2015.

  11. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.

    Article  Google Scholar 

  12. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31.

    Article  Google Scholar 

  13. Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM. Meniscus repair and regeneration: review on current methods and research potential. European cells & materials. 2013;26:150–70.

    Article  Google Scholar 

  14. Clayton RAE, Court-Brown CM. The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury. 2008;39(12):1338–44.

    Article  Google Scholar 

  15. Bernstein J. Meniscal tears. Clin Orthop Relat Res. 2010;468(4):1190–2.

    Article  Google Scholar 

  16. Ciccotti MG, Shields CLJ, El Attrache NS. Meniscectomy. In: Fu FH, Harner CD, Vince KG, editors. Knee surgery. Philadelphia: Williams & Wilkins; 1994. p. 591–613 .In brief

    Google Scholar 

  17. Allen PR, Denham RA, Swan AV. Late degenerative changes after meniscectomy. Factors affecting the knee after operation. Journal of Bone & Joint Surgery, British Volume. 1984;66(5):666–71.

    Google Scholar 

  18. Fairbank TJ. Knee joint changes after meniscectomy. Journal of Bone & Joint Surgery, British Volume. 1948;30(4):664–70.

    Google Scholar 

  19. Jackson JP. Degenerative changes in the knee after meniscectomy. Br Med J. 1968;2(5604):525.

    Article  Google Scholar 

  20. McDermott ID, Amis AA. The consequences of meniscectomy. Journal of Bone & Joint Surgery, British Volume. 2006;88(12):1549–56.

    Article  Google Scholar 

  21. Mordecai SC, Al-Hadithy N, Ware HE, Gupte CM. Treatment of meniscal tears: an evidence based approach. World journal of orthopedics. 2014;5(3):233.

    Article  Google Scholar 

  22. Verdonk R. The meniscus: past, present and future. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):145–6.

    Article  Google Scholar 

  23. Beaufils P, Verdonk R. The meniscus. Berlin Heidelberg: Springer-Verlag; 2010.

    Book  Google Scholar 

  24. Paxton ES, Stock MV, Brophy RH. Meniscal repair versus partial meniscectomy: a systematic review comparing reoperation rates and clinical outcomes. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2011;27(9):1275–88.

    Article  Google Scholar 

  25. Pereira H, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. The meniscus: basic science. In: Verdonk R, Espregueira-Mendes J, Monllau JC, editors. Meniscal transplantation. Heidelberg, New York, Dordrecht, London: Springer; 2013. p. 7–14.

    Chapter  Google Scholar 

  26. Fayard JM, Pereira H, Servien E, Lustig S, Neyret P. Meniscectomy global results-complications. The meniscus. Berlin Heidelberg: Springer-Verlag; 2010.

    Google Scholar 

  27. Pereira H, Cengiz IF, Silva-Correia J, Ripoll PL, Varatojo R, Oliveira JM, et al. Meniscal repair: indications, techniques, and outcome. In: Randelli P, Dejour D, van Dijk CN, Denti M, Seil R, editors. Arthroscopy: basic to advanced. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. p. 125–42.

    Google Scholar 

  28. Salata MJ, Gibbs AE, Sekiya JK. A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med. 2010;38(9):1907–16.

    Article  Google Scholar 

  29. McDermott ID, Masouros SD, Amis AA. Biomechanics of the menisci of the knee. Curr Orthop. 2008;22:193–201.

    Article  Google Scholar 

  30. Walker PS, Hajek JV. The load-bearing area in the knee joint. J Biomech. 1972;5(6):581–9.

    Article  Google Scholar 

  31. Bourne RB, Finlay JB, Papadopoulos P, Andreae P. The effect of medial meniscectomy on strain distribution in the proximal part of the tibia. J Bone Joint Surg Am. 1984;66(9):1431–7.

    Article  Google Scholar 

  32. Smigielski R, Becker R, Zdanowicz U, Ciszek B. Medial meniscus anatomy-from basic science to treatment. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):8–14.

    Article  Google Scholar 

  33. Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Advanced regenerative strategies for human knee meniscus. Regenerative strategies for the treatment of knee joint disabilities: Springer; 2017. p. 271–85.

  34. Pereira H, Cengiz IF, Silva-Correia J, Oliveira JM, Reis RL, Espregueira-Mendes J. Human meniscus: from biology to tissue engineering strategies. Sports injuries. USA: Springer; 2015. p. 1089–102.

    Google Scholar 

  35. Salgado AJ, Oliveira JM, Martins A, Teixeira FG, Silva NA, Neves NM, et al. Tissue engineering and regenerative medicine: past, present, and future. Int Rev Neurobiol. 2013;108:1–33.

    Article  Google Scholar 

  36. Beaufils P, Englund M, Järvinen TLN, Pereira H, Pujol N. How to share guidelines in daily practice on meniscus repair, degenerate meniscal lesion, and meniscectomy. In: Zaffagnini S, Becker R, GMMJ K, Espregueira-Mendes J, van Dijk CN, editors. ESSKA instructional course lecture book Amsterdam 2014. Amsterdam: Springer; 2014. p. 97–112.

    Chapter  Google Scholar 

  37. Getgood A, LaPrade RF, Verdonk P, Gersoff W, Cole B, Spalding T, et al. International meniscus reconstruction experts forum (IMREF) consensus statement on the practice of meniscal allograft transplantation. Am J Sports Med. 2015;2016 0363546516660064

  38. ESSKA Meniscus Consensus Project, 2016, available on http://c.ymcdn.com/sites/www.esska.org/resource/resmgr/Docs/2016_DML_full_text.pdf, last accessed on 17.11.2016. .

  39. Nishimuta JF, Levenston ME. Response of cartilage and meniscus tissue explants to in vitro compressive overload. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society. 2012;20(5):422–9.

    Article  Google Scholar 

  40. Abraham AC, Edwards CR, Odegard GM, Donahue TL. Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. J Mech Behav Biomed Mater. 2011;4(8):2024–30.

    Article  Google Scholar 

  41. Guo H, Maher SA, Spilker RL. Biphasic finite element contact analysis of the knee joint using an augmented Lagrangian method. Med Eng Phys. 2013;35(9):1313–20.

    Article  Google Scholar 

  42. Noble J, Hamblen DL. The pathology of the degenerate meniscus lesion. The Journal of bone and joint surgery British volume. 1975;57(2):180–6.

    Google Scholar 

  43. Sweigart MA, Athanasiou KA. Toward tissue engineering of the knee meniscus. Tissue Eng. 2001;7(2):111–29.

    Article  Google Scholar 

  44. Denti M, Espregueira-Mendes J, Pereira H, Raoulis V, Hantes M. Traumatic meniscal lesions, Surgery of the Meniscus. Amsterdam: Springer; 2016. p. 67–78.

    Google Scholar 

  45. Poehling GG, Ruch DS, Chabon SJ. The landscape of meniscal injuries. Clin Sports Med. 1990;9(3):539–49.

    Google Scholar 

  46. Ruiz-Iban MA, Diaz-Heredia J, Elias-Martin E, Moros-Marco S, Cebreiro Martinez Del Val I. Repair of meniscal tears associated with tibial plateau fractures: a review of 15 cases. Am J Sports Med. 2012;40(10):2289–95.

    Article  Google Scholar 

  47. Anderson AF, Irrgang JJ, Dunn W, Beaufils P, Cohen M, Cole BJ, et al. Interobserver reliability of the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine (ISAKOS) classification of meniscal tears. Am J Sports Med. 2011;39(5):926–32.

    Article  Google Scholar 

  48. Smillie IS. The current pattern of the pathology of meniscus tears. Proceedings of the Royal Society of Medicine. 1968;61(1):44–5.

    Google Scholar 

  49. Christoforakis J, Pradhan R, Sanchez-Ballester J, Hunt N, Strachan RK. Is there an association between articular cartilage changes and degenerative meniscus tears? Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2005;21(11):1366–9.

    Article  Google Scholar 

  50. Yim JH, Seon JK, Song EK, Choi JI, Kim MC, Lee KB, et al. A comparative study of meniscectomy and nonoperative treatment for degenerative horizontal tears of the medial meniscus. Am J Sports Med. 2013;41(7):1565–70.

    Article  Google Scholar 

  51. Bhatia S, LaPrade CM, Ellman MB, LaPrade RF. Meniscal root tears: significance, diagnosis, and treatment. Am J Sports Med. 2014;42(12):3016–30.

    Article  Google Scholar 

  52. Koenig JH, Ranawat AS, Umans HR, Difelice GS. Meniscal root tears: diagnosis and treatment. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2009;25(9):1025–32.

    Article  Google Scholar 

  53. Koo JH, Choi S-H, Lee SA, Wang JH. Comparison of medial and lateral meniscus root tears. PLoS One. 2015;10(10):e0141021.

    Article  Google Scholar 

  54. LaPrade CM, Foad A, Smith SD, Turnbull TL, Dornan GJ, Engebretsen L, et al. Biomechanical consequences of a nonanatomic posterior medial meniscal root repair. Am J Sports Med. 2015;43(4):912–20.

    Article  Google Scholar 

  55. Poulsen MR, Johnson DL. Meniscal injuries in the young, athletically active patient. Phys Sportsmed. 2011;39(1):123–30.

    Article  Google Scholar 

  56. Baker P, Coggon D, Reading I, Barrett D, McLaren M, Cooper C. Sports injury, occupational physical activity, joint laxity, and meniscal damage. J Rheumatol. 2002;29(3):557–63.

    Google Scholar 

  57. Englund M, Guermazi A, Gale D, Hunter DJ, Aliabadi P, Clancy M, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med. 2008;359(11):1108–15.

    Article  Google Scholar 

  58. Englund M, Niu J, Guermazi A, Roemer FW, Hunter DJ, Lynch JA, et al. Effect of meniscal damage on the development of frequent knee pain, aching, or stiffness. Arthritis Rheum. 2007;56(12):4048–54.

    Article  Google Scholar 

  59. Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology. 2006;239(3):811–7.

    Article  Google Scholar 

  60. Howell R, Kumar NS, Patel N, Tom J. Degenerative meniscus: pathogenesis, diagnosis, and treatment options. World J Orthop. 2014;5(5):597–602.

    Article  Google Scholar 

  61. Englund M, Guermazi A, Lohmander SL. The role of the meniscus in knee osteoarthritis: a cause or consequence? Radiol Clin N Am. 2009;47(4):703–12.

    Article  Google Scholar 

  62. Smith BE, Thacker D, Crewesmith A, Hall M. Special tests for assessing meniscal tears within the knee: a systematic review and meta-analysis. Evidence-based medicine. 2015;20(3):88–97.

    Article  Google Scholar 

  63. Van Dyck P, Vanhoenacker FM, Lambrecht V, Wouters K, Gielen JL, Dossche L, et al. Prospective comparison of 1.5 and 3.0-T MRI for evaluating the knee menisci and ACL. J Bone Joint Surg Am. 2013;95(10):916–24.

    Article  Google Scholar 

  64. Beaufils P, Hulet C, Dhenain M, Nizard R, Nourissat G, Pujol N. Clinical practice guidelines for the management of meniscal lesions and isolated lesions of the anterior cruciate ligament of the knee in adults. Orthopaedics & traumatology, surgery & research : OTSR. 2009;95(6):437–42.

    Article  Google Scholar 

  65. Nam TS, Kim MK, Ahn JH. Efficacy of magnetic resonance imaging evaluation for meniscal tear in acute anterior cruciate ligament injuries. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2014;30(4):475–82.

    Article  Google Scholar 

  66. Ben-Galim P, Steinberg EL, Amir H, Ash N, Dekel S, Arbel R. Accuracy of magnetic resonance imaging of the knee and unjustified surgery. Clin Orthop Relat Res. 2006;447:100–4.

    Article  Google Scholar 

  67. Rossbach BP, Pietschmann MF, Gulecyuz MF, Niethammer TR, Ficklscherer A, Wild S, et al. Indications requiring preoperative magnetic resonance imaging before knee arthroscopy. Archives of medical science : AMS. 2014;10(6):1147–52.

    Article  Google Scholar 

  68. Cooper DE, Arnoczky SP, Warren RF. Meniscal repair. Clin Sports Med. 1991;10(3):529–48.

    Google Scholar 

  69. Anderson L, Watts M, Shapter O, Logan M, Risebury M, Duffy D, et al. Repair of radial tears and posterior horn detachments of the lateral meniscus: minimum 2-year follow-up. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2010;26(12):1625–32.

    Article  Google Scholar 

  70. Hulet CH, Locker BG, Schiltz D, Texier A, Tallier E, Vielpeau CH. Arthroscopic medial meniscectomy on stable knees. The Journal of bone and joint surgery British volume. 2001;83(1):29–32.

    Article  Google Scholar 

  71. Pujol N, Tardy N, Boisrenoult P, Beaufils P. Long-term outcomes of all-inside meniscal repair. Knee Surg Sports Traumatol Arthrosc. 2015;23(1):219–24.

    Article  Google Scholar 

  72. Lyman S, Hidaka C, Valdez AS, Hetsroni I, Pan TJ, Do H, et al. Risk factors for meniscectomy after meniscal repair. Am J Sports Med. 2013;41(12):2772–8.

    Article  Google Scholar 

  73. Pujol N, Beaufils P. Healing results of meniscal tears left in situ during anterior cruciate ligament reconstruction: a review of clinical studies. Knee Surg Sports Traumatol Arthrosc. 2009;17(4):396–401.

    Article  Google Scholar 

  74. Snoeker BA, Bakker EW, Kegel CA, Lucas C. Risk factors for meniscal tears: a systematic review including meta-analysis. The Journal of orthopaedic and sports physical therapy. 2013;43(6):352–67.

    Article  Google Scholar 

  75. Kartus JT, Russell VJ, Salmon LJ, Magnusson LC, Brandsson S, Pehrsson NG, et al. Concomitant partial meniscectomy worsens outcome after arthroscopic anterior cruciate ligament reconstruction. Acta Orthop Scand. 2002;73(2):179–85.

    Article  Google Scholar 

  76. Brophy RH, Gill CS, Lyman S, Barnes RP, Rodeo SA, Warren RF. Effect of anterior cruciate ligament reconstruction and meniscectomy on length of career in National Football League athletes: a case control study. Am J Sports Med. 2009;37(11):2102–7.

    Article  Google Scholar 

  77. Mariani PP, Garofalo R, Margheritini F. Chondrolysis after partial lateral meniscectomy in athletes. Knee Surg Sports Traumatol Arthrosc. 2008;16(6):574–80.

    Article  Google Scholar 

  78. Sonnery-Cottet B, Archbold P, Thaunat M, Carnesecchi O, Tostes M, Chambat P. Rapid chondrolysis of the knee after partial lateral meniscectomy in professional athletes. Knee. 2014;21(2):504–8.

    Article  Google Scholar 

  79. El Ghazaly SA, Rahman AA, Yusry AH, Fathalla MM. Arthroscopic partial meniscectomy is superior to physical rehabilitation in the management of symptomatic unstable meniscal tears. Int Orthop. 2015;39(4):769–75.

    Article  Google Scholar 

  80. Chang JH, Shen HC, Huang GS, Pan RY, Wu CF, Lee CH, et al. A biomechanical comparison of all-inside meniscus repair techniques. J Surg Res. 2009;155(1):82–8.

    Article  Google Scholar 

  81. Chang HC, Caborn DN, Nyland J, Burden R. Effect of lesion location on fixation strength of the meniscal viper repair system: an in vitro study using porcine menisci. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2006;22(4):394–9.

    Article  Google Scholar 

  82. Henning CE. Arthroscopic repair of meniscus tears. Orthopedics. 1983;6(9):1130–2.

    Google Scholar 

  83. Henning CE, Lynch MA, Yearout KM, Vequist SW, Stallbaumer RJ, Decker KA. Arthroscopic meniscal repair using an exogenous fibrin clot. Clin Orthop Relat Res. 1990;252:64–72.

    Google Scholar 

  84. Warren RF. Arthroscopic meniscus repair. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 1985;1(3):170–2.

    Article  Google Scholar 

  85. Morgan CD, Casscells SW. Arthroscopic meniscus repair: a safe approach to the posterior horns. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 1986;2(1):3–12.

    Article  Google Scholar 

  86. Tsai AM, McAllister DR, Chow S, Young CR, Hame SL. Results of meniscal repair using a bioabsorbable screw. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2004;20(6):586–90.

    Article  Google Scholar 

  87. Albrecht-Olsen P, Kristensen G, Burgaard P, Joergensen U, Toerholm C. The arrow versus horizontal suture in arthroscopic meniscus repair. A prospective randomized study with arthroscopic evaluation. Knee Surg Sports Traumatol Arthrosc. 1999;7(5):268–73.

    Article  Google Scholar 

  88. Petsche TS, Selesnick H, Rochman A. Arthroscopic meniscus repair with bioabsorbable arrows. Arthroscopy : the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2002;18(3):246–53.

    Article  Google Scholar 

  89. Gifstad T, Grontvedt T, Drogset JO. Meniscal repair with biofix arrows: results after 4.7 years’ follow-up. Am J Sports Med. 2007;35(1):71–4.

    Article  Google Scholar 

  90. Kurzweil PR, Tifford CD, Ignacio EM. Unsatisfactory clinical results of meniscal repair using the meniscus arrow. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2005;21(8):905.

    Article  Google Scholar 

  91. Farng E, Sherman O. Meniscal repair devices: a clinical and biomechanical literature review. Arthroscopy : the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2004;20(3):273–86.

    Article  Google Scholar 

  92. Miller MD, Kline AJ, Gonzales J, Beach WR. Pitfalls associated with FasT-Fix meniscal repair. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2002;18(8):939–43.

    Article  Google Scholar 

  93. Seil R, Rupp S, Kohn DM. Cyclic testing of meniscal sutures. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2000;16(5):505–10.

    Article  Google Scholar 

  94. Frizziero A, Ferrari R, Giannotti E, Ferroni C, Poli P, Masiero S. The meniscus tear. State of the art of rehabilitation protocols related to surgical procedures. Muscles, ligaments and tendons journal. 2012;2(4):295–301.

    Google Scholar 

  95. Kamimura T, Kimura M. Meniscal repair of degenerative horizontal cleavage tears using fibrin clots: clinical and arthroscopic outcomes in 10 cases. Orthop J Sports Med. 2014;2(11)

  96. Ahn JH, Wang JH, Yoo JC. Arthroscopic all-inside suture repair of medial meniscus lesion in anterior cruciate ligament deficient knees: results of second-look arthroscopies in 39 cases. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2004;20(9):936–45.

    Article  Google Scholar 

  97. Osti L, Del Buono A, Maffulli N. Anterior medial meniscal root tears: a novel arthroscopic all inside repair. Translational medicine @ UniSa. 2015;12:41–6.

    Google Scholar 

  98. Pujol N, Barbier O, Boisrenoult P, Beaufils P. Amount of meniscal resection after failed meniscal repair. Am J Sports Med. 2011;39(8):1648–52.

    Article  Google Scholar 

  99. Pujol N, Bohu Y, Boisrenoult P, Macdes A, Beaufils P. Clinical outcomes of open meniscal repair of horizontal meniscal tears in young patients. Knee Surg Sports Traumatol Arthrosc. 2013;21(7):1530–3.

    Article  Google Scholar 

  100. Katabi N, Pujol N, Boisrenoult P. Meniscal repair: intra- and postoperative complications. In: Beaufils P, Verdonk R, editors. The meniscus. Berlin-Heidelberg: Springer-Verlag; 2010. p. 191–8.

    Chapter  Google Scholar 

  101. Lozano J, Ma CB, Cannon WD. All-inside meniscus repair: a systematic review. Clin Orthop Relat Res. 2007;455:134–41.

    Article  Google Scholar 

  102. Barrett GR, Field MH, Treacy SH, Ruff CG. Clinical results of meniscus repair in patients 40 years and older. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 1998;14(8):824–9.

    Article  Google Scholar 

  103. Chalmers PN, Karas V, Sherman SL, Cole BJ. Return to high-level sport after meniscal allograft transplantation. Arthroscopy: the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2013;29(3):539–44.

    Article  Google Scholar 

  104. Elattar M, Dhollander A, Verdonk R, Almqvist KF, Verdonk P. Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):147–57.

    Article  Google Scholar 

  105. Marcacci M, Zaffagnini S, Grassi A, Muccioli GM, Bonanzinga T, Neri M, et al. Meniscal allograft transplantation. Techniques in cartilage repair surgery. Amsterdam: Springer; 2014. p. 305–23.

    Book  Google Scholar 

  106. Zukor D, Brooks P, Gross A, Cameron J. Meniscal allograft experimental and clinical study. Orthop Rev. 1988;17:522–50.

    Google Scholar 

  107. Locht RC, Gross AE, Langer F. Late osteochondral allograft resurfacing for tibial plateau fractures. J Bone Joint Surg Am. 1984;66(3):328–35.

    Article  Google Scholar 

  108. Milachowski KA, Weismeier K, Wirth CJ. Homologous meniscus transplantation. Experimental and clinical results. Int Orthop. 1989;13(1):1–11.

    Article  Google Scholar 

  109. Monllau JC, González-Lucena G, Gelber PE, Pelfort X. Allograft meniscus transplantation: a current review. Techniques in Knee Surgery. 2010;9(2):107–13.

    Article  Google Scholar 

  110. Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL. Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2011;27(12):1706–19.

    Article  Google Scholar 

  111. Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, Bonanzinga T, Nitri M, Raggi F, et al. MRI evaluation of a collagen meniscus implant: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3228–37.

    Article  Google Scholar 

  112. Bouyarmane H, Beaufils P, Pujol N, Bellemans J, Roberts S, Spalding T, et al. Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. Orthopaedics & traumatology, surgery & research: OTSR. 2014;100(1):153–7.

    Article  Google Scholar 

  113. Rodkey WG, Steadman JR, Li ST. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res. 1999;367 Suppl:S281–92.

    Article  Google Scholar 

  114. Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W, et al. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med. 2012;40(4):844–53.

    Article  Google Scholar 

  115. Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs E-L. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med. 2011;39(4):774–82.

    Article  Google Scholar 

  116. Verdonk R. Polyurethane implant (ACTIFIT). In: Verdonk R, Espregueira Mendes J, Monllau JC, editors. Meniscal transplantation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 83–97.

    Chapter  Google Scholar 

  117. Monllau JC. Collagen meniscal implant (CMI). In: Verdonk R, Espregueira Mendes J, Monllau JC, editors. Meniscal transplantation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 73–82.

    Chapter  Google Scholar 

  118. Bulgheroni P, Bulgheroni E, Regazzola G, Mazzola C. Polyurethane scaffold for the treatment of partial meniscal tears. Clinical results with a minimum two-year follow-up. Joints. 2013;1(4):161–6.

    Google Scholar 

  119. Gelber PE, Petrica AM, Isart A, Mari-Molina R, Monllau JC. The magnetic resonance aspect of a polyurethane meniscal scaffold is worse in advanced cartilage defects without deterioration of clinical outcomes after a minimum two-year follow-up. Knee. 2015;22(5):389–94.

    Article  Google Scholar 

  120. Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R, Hinarejos P, et al. Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy: the journal of arthroscopic & related surgery: official publication of the Arthroscopy Association of North America and the International Arthroscopy Association. 2011;27(7):933–43.

    Article  Google Scholar 

  121. Zaffagnini S, Marcheggiani Muccioli GM, Grassi A, Bonanzinga T, Filardo G, Canales Passalacqua A, et al. Arthroscopic lateral collagen meniscus implant in a professional soccer player. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1740–3.

    Article  Google Scholar 

  122. Cengiz IF, Oliveira JM, Reis RL. Tissue engineering and regenerative medicine strategies for the treatment of osteochondral lesions. 3D Multiscale physiological human. Amsterdam: Springer; 2014. p. 25–47.

    Google Scholar 

  123. Zellner J, Hierl K, Mueller M, Pfeifer C, Berner A, Dienstknecht T, et al. Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater. 2013;101(7):1133–42.

    Article  Google Scholar 

  124. Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A. 2010;94(4):1150–61.

    Google Scholar 

  125. Cengiz I, Pitikakis M, Cesario L, Parascandolo P, Vosilla L, Viano G, et al. Building the basis for patient-specific meniscal scaffolds: from human knee MRI to fabrication of 3D printed scaffolds. Bioprinting. 2016;1:1–10.

    Article  Google Scholar 

  126. González-Fernández ML, Pérez-Castrillo S, Sánchez-Lázaro JA, Prieto-Fernández JG, López-González ME, Lobato-Pérez S, et al. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Am J Vet Res. 2016;77(7):779–88.

    Article  Google Scholar 

  127. Heo J, Koh RH, Shim W, Kim HD, Yim H-G, Hwang NS. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug delivery and translational research. 2016;6(2):148–58.

    Article  Google Scholar 

  128. Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen–GAG matrices in vitro. Biomaterials. 1999;20(8):701–9.

    Article  Google Scholar 

  129. Puetzer J, Bonassar L. Physiologically distributed loading patterns drive the formation of zonally organized collagen structures in tissue engineered meniscus. Tissue engineering Part A. 2016.

  130. Gunja NJ, Athanasiou KA. Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell‐seeded PLLA scaffolds. J Tissue Eng Regen Med. 2010;4(2):115–22.

    Article  Google Scholar 

  131. Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-β1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials. 2009;30(4):565–73.

    Article  Google Scholar 

  132. Warnock JJ, Fox DB, Stoker AM, Beatty M, Cockrell M, Janicek JC, et al. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study. PeerJ. 2014;2:e353.

    Article  Google Scholar 

  133. Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng. 2005;11(7–8):1095–104.

    Article  Google Scholar 

  134. Gu Y, Zhu W, Hao Y, Lu L, Chen Y, Wang Y. Repair of meniscal defect using an induced myoblast-loaded polyglycolic acid mesh in a canine model. Experimental and therapeutic medicine. 2012;3(2):293–8.

    Google Scholar 

  135. Kwak HS, Nam J, Lee Jh, Kim HJ, Yoo JJ. Meniscal repair in vivo using human chondrocyte‐seeded PLGA mesh scaffold pretreated with platelet‐rich plasma. Journal of Tissue Engineering and Regenerative Medicine. 2014.

  136. Baker BM, Nathan AS, Huffman GR, Mauck RL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthr Cartil. 2009;17(3):336–45.

    Article  Google Scholar 

  137. Zhang Z-Z, Jiang D, Ding J-X, Wang S-J, Zhang L, Zhang J-Y, et al. Role of scaffold mean pore size in meniscus regeneration. Acta Biomater. 2016;43:314–26.

    Article  Google Scholar 

  138. Baker BM, Nathan AS, Gee AO, Mauck RL. The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials. 2010;31(24):6190–200.

    Article  Google Scholar 

  139. Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil. 2006;14(10):1056–65.

    Article  Google Scholar 

  140. Fisher MB, Henning EA, Söegaard N, Bostrom M, Esterhai JL, Mauck RL. Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds. J Biomech. 2015;48(8):1412–9.

    Article  Google Scholar 

  141. Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Reggiani LM, et al. Tissue engineering for total meniscal substitution: animal study in sheep model—results at 12 months. Tissue Eng A. 2012;18(15–16):1573–82.

    Article  Google Scholar 

  142. Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A. 2008;85(2):445–55.

    Article  Google Scholar 

  143. Freymann U, Endres M, Neumann K, Scholman H-J, Morawietz L, Kaps C. Expanded human meniscus-derived cells in 3-D polymer–hyaluronan scaffolds for meniscus repair. Acta Biomater. 2012;8(2):677–85.

    Article  Google Scholar 

  144. Gruchenberg K, Ignatius A, Friemert B, von Lübken F, Skaer N, Gellynck K, et al. In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2218–29.

    Article  Google Scholar 

  145. Mandal BB, Park S-H, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2011;32(2):639–51.

    Article  Google Scholar 

  146. Yan L-P, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012;8(1):289–301.

    Article  Google Scholar 

  147. Sarem M, Moztarzadeh F, Mozafari M, Shastri VP. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater Sci Eng C. 2013;33(8):4777–85.

    Article  Google Scholar 

  148. Weinand C, Peretti GM, Adams Jr SB, Randolph MA, Savvidis E, Gill TJ. Healing potential of transplanted allogeneic chondrocytes of three different sources in lesions of the avascular zone of the meniscus: a pilot study. Arch Orthop Trauma Surg. 2006;126(9):599–605.

    Article  Google Scholar 

  149. Lu H, Cai D, Wu G, Wang K, Shi D. Whole meniscus regeneration using polymer scaffolds loaded with fibrochondrocytes. Chinese journal of traumatology = Zhonghua chuang shang za zhi/Chinese Medical Association. 2011;14(4):195.

    Google Scholar 

  150. Neves AA, Medcalf N, Brindle KM. Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds. Biomaterials. 2005;26(23):4828–36.

    Article  Google Scholar 

  151. Bodin A, Concaro S, Brittberg M, Gatenholm P. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med. 2007;1(5):406–8.

    Article  Google Scholar 

  152. Martínez H, Brackmann C, Enejder A, Gatenholm P. Mechanical stimulation of fibroblasts in micro‐channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A. 2012;100(4):948–57.

    Article  Google Scholar 

  153. Monteiro N, Martins A, Pires R, Faria S, Fonseca NA, Moreira JN, et al. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science. 2014;2(9):1195–209.

    Article  Google Scholar 

  154. Duarte ARC, Mano JF, Reis RL. Perspectives on: supercritical fluid technology for 3d tissue engineering scaffold applications. J Bioact Compat Polym. 2009;24(4):385–400.

    Article  Google Scholar 

  155. Guo W, Liu S, Zhu Y, Yu C, Lu S, Yuan M, et al. Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int. 2015;2015:517520.

    Google Scholar 

  156. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457–70.

    Article  Google Scholar 

  157. Thurber AE, Omenetto FG, Kaplan DL. In vivo bioresponses to silk proteins. Biomaterials. 2015;71:145–57.

    Article  Google Scholar 

  158. Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P. Biomaterials in search of a meniscus substitute. Biomaterials. 2014;35(11):3527–40.

    Article  Google Scholar 

  159. Silva‐Correia J, Gloria A, Oliveira MB, Mano JF, Oliveira JM, Ambrosio L, et al. Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels. J Biomed Mater Res A. 2013;101(12):3438–46.

    Article  Google Scholar 

  160. Wu J, Ding Q, Dutta A, Wang Y. Huang Y-h. Weng H et al. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration Acta Biomaterialia. 2015;16:49–59.

    Google Scholar 

  161. Maier D, Braeun K, Steinhauser E, Ueblacker P, Oberst M, Kreuz PC, et al. In vitro analysis of an allogenic scaffold for tissue‐engineered meniscus replacement. J Orthop Res. 2007;25(12):1598–608.

    Article  Google Scholar 

  162. Oliveira J, Pereira H, Yan L, Silva-Correia J, Oliveira A, Espregueira-Mendes J et al., inventors; Scaffold that enables segmental vascularization for the engineering of complex tissues and methods of making the same, PT Patent 106174, Priority date: 161/2013, 26–08-2013 2013.

  163. Baker BM, Gee AO, Sheth NP, Huffman GR, Sennett BJ, Schaer TP, et al. Meniscus tissue engineering on the nanoscale—from basic principles to clinical application. Journal of Knee Surgery. 2009;22(01):45–59.

    Article  Google Scholar 

  164. Perán M, García MA, Lopez-Ruiz E, Jiménez G, Marchal JA. How can nanotechnology help to repair the body? Advances in cardiac, skin, bone, cartilage and nerve tissue regeneration. Materials. 2013;6(4):1333–59.

    Article  Google Scholar 

  165. Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007;28(11):1967–77.

    Article  Google Scholar 

  166. Subbiah R, Veerapandian M. S Yun K. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem. 2010;17(36):4559–77.

    Article  Google Scholar 

  167. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28(2):344–53.

    Article  Google Scholar 

  168. Haynie DT, Zhang L, Zhao W, Rudra JS. Protein-inspired multilayer nanofilms: science, technology and medicine. Nanomedicine: Nanotechnology, Biology and Medicine. 2006;2(3):150–7.

    Google Scholar 

  169. Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenström P. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules. 2008;9(3):1044–9.

    Article  Google Scholar 

  170. Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66–80.

    Article  Google Scholar 

  171. De Coninck T, Elsner JJ, Linder-Ganz E, Cromheecke M, Shemesh M, Huysse W, et al. In-vivo evaluation of the kinematic behavior of an artificial medial meniscus implant: a pilot study using open-MRI. Clin Biomech. 2014;29(8):898–905.

    Article  Google Scholar 

  172. Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, et al. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):255–63.

    Article  Google Scholar 

  173. Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med. 2014;6(266):266ra171–1.

  174. Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC. Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng. 2013;15:115–36.

    Article  Google Scholar 

  175. Hu JC, Athanasiou KA. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 2006;12(4):969–79.

    Article  Google Scholar 

  176. Araujo V, Figueiredo C, Joazeiro P, Mora O, Toledo O. In vitro rapid organization of rabbit meniscus fibrochondrocytes into chondro-like tissue structures. J Submicrosc Cytol Pathol. 2002;34(3):335–43.

    Google Scholar 

  177. Aufderheide AC, Athanasiou KA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng. 2007;13(9):2195–205.

    Article  Google Scholar 

  178. Huey DJ, Athanasiou KA. Maturational growth of self-assembled, functional menisci as a result of TGF-β1 and enzymatic chondroitinase-ABC stimulation. Biomaterials. 2011;32(8):2052–8.

    Article  Google Scholar 

  179. MacBarb RF, Makris EA, Hu JC, Athanasiou KA. A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage. Acta Biomater. 2013;9(1):4626–34.

    Article  Google Scholar 

  180. Zhong J-J. Recent advances in bioreactor engineering. Korean J Chem Eng. 2010;27(4):1035–41.

    Article  Google Scholar 

  181. Wang D, Liu W, Han B, Xu R. The bioreactor: a powerful tool for large-scale culture of animal cells. Curr Pharm Biotechnol. 2005;6(5):397–403.

    Article  Google Scholar 

  182. Hansmann J, Groeber F, Kahlig A, Kleinhans C, Walles H. Bioreactors in tissue engineering—principles, applications and commercial constraints. Biotechnol J. 2013;8(3):298–307.

    Article  Google Scholar 

  183. Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM. Bioreactor design for tissue engineering. J Biosci Bioeng. 2005;100(3):235–45.

    Article  Google Scholar 

  184. Martin Y, Vermette P. Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials. 2005;26(35):7481–503.

    Article  Google Scholar 

  185. Ballyns JJ, Wright TM, Bonassar LJ. Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials. 2010;31(26):6756–63.

    Article  Google Scholar 

  186. Puetzer JL, Ballyns JJ, Bonassar LJ. The effect of the duration of mechanical stimulation and post-stimulation culture on the structure and properties of dynamically compressed tissue-engineered menisci. Tissue Eng A. 2012;18(13–14):1365–75.

    Article  Google Scholar 

  187. Petri M, Ufer K, Toma I, Becher C, Liodakis E, Brand S, et al. Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):223–31.

    Article  Google Scholar 

  188. Marsano A, Wendt D, Quinn T, Sims T, Farhadi J, Jakob M, et al. Bi-zonal cartilaginous tissues engineered in a rotary cell culture system. Biorheology. 2006;43(3):553–60.

    Google Scholar 

  189. Neves AA, Medcalf N, Brindle K. Functional assessment of tissue-engineered meniscal cartilage by magnetic resonance imaging and spectroscopy. Tissue Eng. 2003;9(1):51–62.

    Article  Google Scholar 

  190. Gunja NJ, Athanasiou KA. Effects of hydrostatic pressure on leporine meniscus cell‐seeded PLLA scaffolds. J Biomed Mater Res A. 2010;92(3):896–905.

    Google Scholar 

  191. Ballyns JJ, Bonassar LJ. Dynamic compressive loading of image-guided tissue engineered meniscal constructs. J Biomech. 2011;44(3):509–16.

    Article  Google Scholar 

  192. Liu C, Abedian R, Meister R, Haasper C, Hurschler C, Krettek C, et al. Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials. 2012;33(4):1052–64.

    Article  Google Scholar 

  193. Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol. 2006;290(6):C1610–C5.

    Article  Google Scholar 

  194. Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res. 2003;21(6):963–9.

    Article  Google Scholar 

  195. Deponti D, Giancamillo AD, Scotti C, Peretti GM, Martin I. Animal models for meniscus repair and regeneration. J Tissue Eng Regen Med. 2015;9(5):512–27.

    Article  Google Scholar 

  196. Di Matteo B, Perdisa F, Gostynska N, Kon E, Filardo G, Marcacci M. Meniscal scaffolds—preclinical evidence to support their use: a systematic review. The open orthopaedics journal. 2015;9:143.

    Article  Google Scholar 

  197. Yamasaki T, Deie M, Shinomiya R, Yasunaga Y, Yanada S, Ochi M. Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow. Artif Organs. 2008;32(7):519–24.

    Article  Google Scholar 

  198. Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res. 2009;467(12):3165–74.

    Article  Google Scholar 

  199. Gu Y, Wang Y, Dai H, Lu L, Cheng Y, Zhu W. Chondrogenic differentiation of canine myoblasts induced by cartilage-derived morphogenetic protein-2 and transforming growth factor-β1 in vitro. Mol Med Report. 2012;5(3):767–72.

    Google Scholar 

  200. Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, et al. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 2007;13(5):1103–12.

    Article  Google Scholar 

  201. Amable PR, Carias RBV, Teixeira MVT, da Cruz Pacheco Í, do Amaral RJFC, Granjeiro JM et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem cell research & therapy. 2013;4(3):67.

  202. Everts PA, Knape JT, Weibrich G, Schonberger J, Hoffmann J, Overdevest EP, et al. Platelet-rich plasma and platelet gel: a review. Journal of ExtraCorporeal Technology. 2006;38(2):174.

    Google Scholar 

  203. Laver L, Marom N, Dnyanesh L, Mei-Dan O, Espregueira-Mendes J, Gobbi A. PRP for degenerative cartilage disease. A systematic review of clinical studies. Cartilage. 2016 1947603516670709

  204. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225–8.

    Article  Google Scholar 

  205. Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62:489–96.

    Article  Google Scholar 

  206. Anderson WF. Human gene therapy. Nature. 1998;392(6679):25.

    Google Scholar 

  207. Evans C, Ghivizzani S, Robbins P. Orthopedic gene therapy—lost in translation? J Cell Physiol. 2012;227(2):416–20.

    Article  Google Scholar 

  208. Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO molecular medicine. 2013;5(11):1642–61.

    Article  Google Scholar 

  209. Goto H, Shuler FD, Lamsam C, Moller HD, Niyibizi C, Fu FH, et al. Transfer of LacZ marker gene to the meniscus. The Journal of Bone & Joint Surgery. 1999;81(7):918–25.

    Article  Google Scholar 

  210. Cucchiarini M, Schetting S, Terwilliger E, Kohn D, Madry H. rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and α-SMA expression in human meniscal lesions. Gene Ther. 2009;16(11):1363–72.

    Article  Google Scholar 

  211. Hidaka C, Ibarra C, Hannafin JA, Torzilli PA, Quitoriano M, Jen S-S, et al. Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng. 2002;8(1):93–105.

    Article  Google Scholar 

  212. Madry H, Cucchiarini M, Kaul G, Kohn D, Terwilliger EF, Trippel SB. Menisci are efficiently transduced by recombinant adeno-associated virus vectors in vitro and in vivo. Am J Sports Med. 2004;32(8):1860–5.

    Article  Google Scholar 

  213. Martinek V, Usas A, Pelinkovic D, Robbins P, Fu FH, Huard J. Genetic engineering of meniscal allografts. Tissue Eng. 2002;8(1):107–17.

    Article  Google Scholar 

  214. Patel JM, Merriam AR, Kohn J, Gatt Jr CJ, Dunn MG. Negative outcomes of poly (l-lactic acid) fiber-reinforced scaffolds in an ovine total meniscus replacement model. Tissue Eng A. 2016;22(17–18):1116–25.

    Article  Google Scholar 

  215. Jülke H, Mainil-Varlet P, Jakob RP, Brehm W, Schäfer B, Nesic D. The role of cells in meniscal guided tissue regeneration a proof of concept study in a goat model. Cartilage. 2015;6(1):20–9.

    Article  Google Scholar 

  216. Zhu WH, Wang YB, Wang L, Qiu GF, Lu LY. Effects of canine myoblasts expressing human cartilage‑derived morphogenetic protein‑2 on the repair of meniscal fibrocartilage injury. Mol Med Rep. 2014;9(5):1767–72.

    Google Scholar 

  217. Hansen R, Bryk E, Vigorita V. Collagen scaffold meniscus implant integration in a canine model: a histological analysis. J Orthop Res. 2013;31(12):1914–9.

    Article  Google Scholar 

  218. Esposito AR, Moda M, SMdM C, de Santana GM, Barbieri JA, Munhoz MM, et al. PLDLA/PCL-T scaffold for meniscus tissue engineering. BioResearch open access. 2013;2(2):138–47.

    Article  Google Scholar 

Download references

Acknowledgements

This article is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). I. F. Cengiz thanks the Portuguese Foundation for Science and Technology (FCT) for the Ph.D. scholarship (SFRH/BD/99555/2014). J. M. Oliveira also thanks the FCT for the funds provided under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Fatih Cengiz.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cengiz, I.F., Pereira, H., Espregueira-Mendes, J. et al. Treatments of Meniscus Lesions of the Knee: Current Concepts and Future Perspectives. Regen. Eng. Transl. Med. 3, 32–50 (2017). https://doi.org/10.1007/s40883-017-0025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-017-0025-z

Keywords

Navigation