Skip to main content

Random expected utility and certainty equivalents: mimicry of probability weighting functions

Abstract

For simple prospects routinely used for certainty equivalent elicitation, random expected utility preferences imply a conditional expectation function that can mimic deterministic rank-dependent preferences. That is, a subject with random expected utility preferences can have expected certainty equivalents exactly like those predicted by rank-dependent probability weighting functions of the inverse-s shape discussed by Quiggin (J Econ Behav Organ 3:323–343, 1982) and advocated by Tversky and Kahneman (J Risk Uncertainty 5:297–323, 1992), Prelec (Econometrica 66:497–527, 1998) and other scholars. Certainty equivalents may not nonparametrically identify preferences: Their conditional expectation (and critically, their interpretation) depends on assumptions concerning the source of their variability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abdellaoui, M. (2000). Parameter-free elicitation of utility and probability weighting functions. Management Science, 46, 1497–1512.

    Article  Google Scholar 

  • Abdellaoui, M., Bleichrodt, H., & Paraschiv, C. (2007). Loss aversion under prospect theory: a parameter-free measurement. Management Science, 53, 1659–1674.

    Article  Google Scholar 

  • Ahn, D. S., & Sarver, T. (2013). Preference for flexibility and random choice. Econometrica, 81, 341–361.

    Article  Google Scholar 

  • Apesteguia, J, & Ballester, M. (2016). Monotone stochastic choice models: The case of risk and time preferences. Journal of Political Economy (forthcoming).

  • Becker, G. M., DeGroot, M. H., & Marschak, J. (1963). Stochastic models of choice behaviour. Behavioral Science, 8, 41–55.

    Article  Google Scholar 

  • Blavatskyy, P., & Pogrebna, G. (2010). Models of stochastic choice and decision theories: why both are important for analyzing decisions. Journal of Applied Econometrics, 25, 963–986.

    Article  Google Scholar 

  • Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free estimation of the probability weighting function in medical decision analysis. Management Science, 46, 1485–1496.

    Article  Google Scholar 

  • Bruhin, A., Fehr-Duda, H., & Epper, T. (2010). Risk and rationality: uncovering heterogeneity in probability distortion. Econometrica, 78, 1375–1412.

    Article  Google Scholar 

  • Butler, D., & Loomes, G. (2007). Imprecision as an account of the preference reversal phenomenon. American Economic Review, 97, 277–297.

    Article  Google Scholar 

  • Eliashberg, J., & Hauser, J. R. (1985). A measurement error approach for modeling consumer risk preference. Management Science, 31, 1–25.

    Article  Google Scholar 

  • Feller, W. (1971). An introduction to probability theory and its applications, Vol. 2, 2nd ed. New York: Wiley.

    Google Scholar 

  • Fox, C. R., & Poldrack, R. A. (2009). Prospect theory and the brain. In P. Glimcher, C. Camerer, E. Fehr, & R. Poldrack (Eds.), Neuroeconomics: decision making and the brain. London, UK: Academic.

    Google Scholar 

  • Gonzalez, R., & Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38, 129–166.

    Article  Google Scholar 

  • González-Velasco, E. A. (1995). Fourier analysis and boundary value problems. San Diego: Academic.

    Google Scholar 

  • Gul, F., & Pesendorfer, W. (2006). Random expected utility. Econometrica, 74, 121–146.

    Article  Google Scholar 

  • Halevy, Y. (2007). Ellsberg revisited: an experimental study. Econometrica, 75, 503–536.

    Article  Google Scholar 

  • Hendry, D. F., & Morgan, M. S. (2005). The foundations of econometric analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hilton, R. W. (1989). Risk attitude under random utility. Journal of Mathematical Psychology, 33, 206–222.

    Article  Google Scholar 

  • Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika, 73, 387–396.

    Article  Google Scholar 

  • Karni, E., & Safra, Z. (2016). A theory of stochastic choice under uncertainty. Journal of Mathematical Economics, 63, 164–173.

    Article  Google Scholar 

  • Krahnen, J. P., Rieck, C., & Theissen, E. (1997). Inferring risk attitudes from certainty equivalents: some lessons from an experimental study. Journal of Economic Psychology, 18, 469–486.

    Article  Google Scholar 

  • Loomes, G., Moffatt, P., & Sugden, R. (2002). A microeconometric test of alternative stochastic theories of risky choice. Journal of Risk and Uncertainty, 24, 103–130.

    Article  Google Scholar 

  • Loomes, G., & Sugden, R. (1995). Incorporating a stochastic element into decision theories. European Economic Review, 39, 641–648.

    Article  Google Scholar 

  • Loomes, G., & Sugden, R. (1998). Testing different stochastic specifications of risky choice. Economica, 65, 581–598.

    Article  Google Scholar 

  • Luce, R. D. (1997). Some unresolved conceptual problems in mathematical psychology. Journal of Mathematical Psychology, 41, 79–87.

    Article  Google Scholar 

  • Luce, R. D. (2000). Utility of gains and losses: measurement-theoretical and experimental approaches. London, UK: Erlbaum.

    Google Scholar 

  • Navarro-Martinez, D., Loomes, G., Isoni, A., Butler, D., & Alaoui, L. (2017). Boundedly rational expected utility theory. MPRA Paper No. 79893.

  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308–313.

    Article  Google Scholar 

  • Nielson, W. S. (2003). Probability transformations in the study of behavior toward risk. Synthese, 135, 171–192.

    Article  Google Scholar 

  • Nolan, J. P. (2018). Stable distributions—Models for heavy tailed data. Boston: Birkhauser. (forthcoming).

    Google Scholar 

  • Pennings, J. M. E., & Smidts, A. (2000). Assessing the construct validity of risk attitude. Management Science, 46, 1337–1348.

    Article  Google Scholar 

  • Powell, M. J. D. (1992). A direct search optimization method that models the objective and constraint functions by linear interpolation. Technical Report DAMTP 1992/NA5, Department of Applied Mathematics and Theoretical Physics, University of Cambridge.

  • Prelec, D. (1998). The probability weighting function. Econometrica, 66, 497–527.

    Article  Google Scholar 

  • Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior & Organization, 3, 323–343.

    Article  Google Scholar 

  • Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2011). Transitivity of preferences. Psychological Review, 118, 42–56.

    Article  Google Scholar 

  • Regenwetter, M., & Marley, A. A. J. (2001). Random relations, random utilities and random functions. Journal of Mathematical Psychology, 45, 864–912.

    Article  Google Scholar 

  • Tversky, A., & Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Review, 102, 269–283.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.

    Article  Google Scholar 

  • Vieider, F. M., Lefebvre, M., Bouchouicha, R., Chmura, T., Hakimov, R., Krawczyk, M., et al. (2015). Common components of risk and uncertainty attitudes across contexts and domains: evidence from 30 countries. Journal of the European Economic Association, 13, 421–452.

    Article  Google Scholar 

  • von Winterfeldt, D., Chung, N.-K., Luce, R. D., & Cho, Y.-H. (1997). Tests of consequence monotonicity in decision making under uncertainty. Journal of Experimental Psychology. Learning, Memory, and Cognition, 23, 406–426.

    Article  Google Scholar 

  • Wakker, P. (2010). Prospect Theory: For Risk and Ambiguity. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Wilcox, N. (2008). Stochastic models for binary discrete choice under risk: A critical primer and econometric comparison. In J. C. Cox & G. W. Harrison (Eds.), Research in Experimental Economics. Risk Aversion in Experiments (Vol. 12. pp. 197–292). Bingley, UK: Emerald.

  • Wilcox, N. (2011). ‘Stochastically more risk averse:’ A contextual theory of stochastic discrete choice under risk. Journal of Econometrics, 162, 89–104.

    Article  Google Scholar 

  • Wilcox, N. (2015). Unusual estimates of probability weighting functions. Chapman University, Economic Science Institute Working Paper #15-10.

  • Wu, G., & Gonzalez, R. (1999). Nonlinear decision weights in choice under uncertainty. Management Science, 45, 74–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel T. Wilcox.

Additional information

I am grateful to the Economic Science Institute and Chapman University for their ongoing support. Jose Apesteguia, Mattias Del Campo Axelrod, Miguel A. Ballester, Sudeep Bhatia, Michael Birnbaum, Daniel Cavagnaro, Mark DeSantis, Glenn W. Harrison, Anthony Marley, Kevin Mumford, John P. Nolan and Mark Schneider provided help or commentary, though none are responsible for remaining errors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14271 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilcox, N.T. Random expected utility and certainty equivalents: mimicry of probability weighting functions. J Econ Sci Assoc 3, 161–173 (2017). https://doi.org/10.1007/s40881-017-0042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40881-017-0042-1

Keywords

  • Certainty equivalence
  • Identification
  • Preference estimation
  • Preference measurement
  • Random preference
  • Choice under risk and uncertainty

JEL Classification

  • C81
  • C91
  • D81