Skip to main content
Log in

On effective \(\epsilon \)-integrality in orbits of rational maps over function fields and multiplicative dependence

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove effective bounds for the set of quasi-integral points in orbits of rational maps over function fields under some conditions, generalizing previous work of Hsia and Silverman (Pacific J Math 249(2), 321–342, 2011) for orbits over function fields of characteristic zero. We then use this to prove height bounds for algebraic functions whose orbit under a rational function has multiplicative dependent elements modulo groups of S-units, generalizing recent results over number fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, M.: A finiteness theorem for canonical heights attached to rational maps over function fields. J. Reine Angew. Math. 626, 205–233 (2009)

    MathSciNet  Google Scholar 

  2. Bérczes, A., Evertse, J.-H., Győry, K.: Effective results for Diophantine equations over finitely generated domains. Acta Arith. 163, 71–100 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bérczes, A., Evertse, J.-H., Győry, K.: Effective results for hyper and superelliptic equations over number fields. Publ. Math. Debrecen 82(3–4), 727–756 (2013)

    MathSciNet  Google Scholar 

  4. Bérczes, A., Ostafe, A., Shparlinski, I.E., Silverman, J.H.: Multiplicative dependence among iterated values of rational functions modulo finitely generated groups. Int. Math. Res. Not. IMRN 2021(12), 9045–9082 (2021)

    Article  MathSciNet  Google Scholar 

  5. Bombieri, E., Masser, D., Zannier, U.: Intersecting a curve with algebraic subgroups of multiplicative groups. Int. Math. Res. Not. IMRN 1999(20), 1119–1140 (1999)

    Article  MathSciNet  Google Scholar 

  6. Bridy, A., Tucker, T.J.: ABC implies a Zsigmondy principle for ramification. J. Number Theory 182, 296–310 (2018)

    Article  MathSciNet  Google Scholar 

  7. Brindza, B., Pintér, Á., Végső, J.: The Schinzel–Tijdeman theorem over function fields. C. R. Math. Rep. Acad. Sci. Canada 16(2–3), 53–57 (1994)

    MathSciNet  Google Scholar 

  8. Carney, A., Hindes, W.: Tucker, T.J.: Isotriviality, integral points, and primitive primes in orbits in characteristic \(p\). Algebra & Number Theory 17(9), 1573–1594 (2023)

  9. Evertse, J.-H., Silverman, J.H.: Uniform bounds for the number of solutions to \(Y^n=f(X)\). Math. Proc. Cambridge Philos. Soc. 100(2), 237–248 (1986)

    Article  MathSciNet  Google Scholar 

  10. Hsia, L.-C., Silverman, J.H.: A quantitative estimate for quasiintegral points in orbits. Pacific J. Math. 249(2), 321–342 (2011)

    Article  MathSciNet  Google Scholar 

  11. Huang, H.-L., Sun, C.-L., Wang, J.T.-Y.: Integral orbits over function fields. Int. J. Number Theory 10(8), 2187–2204 (2014)

    Article  MathSciNet  Google Scholar 

  12. Krieger, H., Levin, A., Scherr, Z., Tucker, T., Yasufuku, Y., Zieve, M.E.: Uniform boundedness of \(S\)-units in arithmetic dynamics. Pacific J. Math. 274(1), 97–106 (2015)

    Article  MathSciNet  Google Scholar 

  13. Mason, R.C.: Diophantine Equations Over Function Fields. London Mathematical Society Lecture Note Series, vol. 96. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  14. Matsuzawa, Y., Silverman, J.: The distribution relation and inverse function theorem in arithmetic geometry. J. Number Theory 226, 307–357 (2021)

    Article  MathSciNet  Google Scholar 

  15. Silverman, J.H.: The theory of height functions. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic Geometry, pp. 151–166. Springer, New York (1986)

    Chapter  Google Scholar 

  16. Silverman, J.H.: Integer points, Diophantine approximation, and iteration of rational maps. Duke Math. J. 71(3), 793–829 (1993)

    Article  MathSciNet  Google Scholar 

  17. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 151. Springer, New York (1994)

    Google Scholar 

  18. Silverman, J.H.: The Arithmetic of Dynamical Systems. Graduate Texts in Mathematics, vol. 241. Springer, New York (2007)

    Google Scholar 

  19. Towsley, A.: A Hasse principle for periodic points. Int. J. Number Theory 9(8), 2053–2068 (2013)

    Article  MathSciNet  Google Scholar 

  20. Vojta, P.: Roth’s theorem over arithmetic function fields. Algebra Number Theory 15(8), 1943–2017 (2021)

    Article  MathSciNet  Google Scholar 

  21. Wang, J.T.-Y.: An effective Roth’s theorem for function fields. Rocky Mountain J. Math. 26(3), 1225–1234 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The Project is funded by Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Mello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author thanks the Australian Research Council Discovery Grant DP180100201, NSERC, and Oakland University for supporting him in this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mello, J. On effective \(\epsilon \)-integrality in orbits of rational maps over function fields and multiplicative dependence. European Journal of Mathematics 9, 112 (2023). https://doi.org/10.1007/s40879-023-00709-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40879-023-00709-x

Keywords

Mathematics Subject Classification

Navigation