The Deligne–Illusie Theorem and exceptional Enriques surfaces

Abstract

Building on the results of Deligne and Illusie on liftings to truncated Witt vectors, we give a criterion for non-liftability that involves only the dimension of certain cohomology groups of vector bundles arising from the Frobenius pushforward of the de Rham complex. Using vector bundle methods, we apply this to show that exceptional Enriques surfaces, a class introduced by Ekedahl and Shepherd-Barron, do not lift to truncated Witt vectors, yet the base of the miniversal formal deformation over the Witt vectors is regular. Using the classification of Bombieri and Mumford, we also show that bielliptic surfaces arising from a quotient by a unipotent group scheme of order p do not lift to the ring of Witt vectors. These results hinge on some observations in homological algebra that relates splittings in derived categories to Yoneda extensions and certain diagram completions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Anantharaman, S.: Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1. Mémoires de la Société Mathématique de France, vol. 33. Société Mathématique de France, Paris (1973)

  2. 2.

    Artin, M.: Algebraic construction of Brieskorn’s resolutions. J. Algebra 29, 330–348 (1974)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Barakat, M., Bremer, B.: Higher extension modules and the Yoneda product (2008). arXiv:0802.3179

  4. 4.

    Berthelot, P., Grothendieck, A., Illusie, L. (eds.): Théorie des Intersections et Théorème de Riemann–Roch (SGA 6). Lecture Notes in Mathematics, vol. 225. Springer, Berlin (1971)

  5. 5.

    Bogomolov, F.A.: Hamiltonian Kählerian manifolds. Dokl. Akad. Nauk SSSR 243(5), 1101–1104 (1978) (in Russian)

  6. 6.

    Bourbaki, N.: Algèbre Commutative. Chapitre 8–9. Masson, Paris (1983)

  7. 7.

    Bombieri, E., Mumford, D.: Enriques’ classification of surfaces in char \(p\). III. Invent. Math. 35, 197–232 (1976)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bombieri, E., Mumford, D.: Enriques’ classification of surfaces in char \(p\), II. In: Baily, W., Shioda, T. (eds.) Complex Analysis and Algebraic Geometry, pp. 23–42. Cambridge University Press, London (1977)

    Google Scholar 

  9. 9.

    Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21. Springer, Berlin (1990)

  10. 10.

    Bourbaki, N.: Algèbre. Chapitres 1 à 3. Hermann, Paris (1970)

  11. 11.

    Brion, M., Kumar, S.: Frobenius Splitting Methods in Geometry and Representation Theory. Progress in Mathematics, vol. 231. Birkhäuser, Boston (2005)

  12. 12.

    Cossec, F.R., Dolgachev, I.V.: Enriques Surfaces. Vol. I. Progress in Mathematics, vol. 76. Birkhäuser, Boston (1989)

  13. 13.

    De Clercq, C., Florence, M., Lucchini Arteche, G.: Lifting vector bundles to Witt vector bundles (2018). arXiv:1807.04859

  14. 14.

    Deligne, P.: Relèvement des surfaces K3 en caractéristique nulle. In: Giraud, J., Illusie, L., Raynaud, M. (eds.), Surface Algébrique, pp. 58–79. Lecture Notes in Mathematics, vol. 868. Springer, Berlin (1981)

  15. 15.

    Deligne, P., Illusie, L.: Relèvements modulo \(p^2\) et décomposition du complexe de de Rham. Invent. Math. 89(2), 247–270 (1987)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Demazure, M., Grothendieck, A. (eds.): Schémas en groupes II (SGA 3 Tome 2). Lecture Notes in Mathematics, vol. 152. Springer, Berlin (1970)

  17. 17.

    Demazure, M., Gabriel, P.: Groupes Algébriques. Masson, Paris (1970)

    Google Scholar 

  18. 18.

    Ekedahl, T., Hyland, J.M.E., Shepherd-Barron, N.I.: Moduli and periods of simply connected Enriques surfaces (2012). arXiv:1210.0342

  19. 19.

    Ekedahl, T., Shepherd-Barron, N.I.: Tangent lifting of deformations in mixed characteristic. J. Algebra 291(1), 108–128 (2005)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Ekedahl, T., Shepherd-Barron, N.I.: On exceptional Enriques surfaces. arXiv:math/0405510

  21. 21.

    Fanelli, A., Schröer, S.: Del Pezzo surfaces and Mori fiber spaces in positive characteristic. Trans. Amer. Math. Soc. 373(3), 1775–1843 (2020)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35. Springer, New York (1967)

  23. 23.

    Giraud, J.: Cohomologie Non Abélienne. Die Grundlehren der mathematischen Wissenschaften, vol. 179. Springer, Berlin (1971)

  24. 24.

    Grothendieck, A.: Éléments de géométrie algébrique II: Étude globale élémentaire de quelques classes de morphismes. Publ. Math. Inst. Hautes Étud. Sci. 8 (1961)

  25. 25.

    Grothendieck, A.: Les schémas de Picard: Propriétés générales. Séminaire Bourbaki, Exp. 236, 221–243 (1962)

    MATH  Google Scholar 

  26. 26.

    Grothendieck, A.: Revêtements Étales et Groupe Fondamental (SGA 1). Lecture Notes in Mathematics, vol. 224. Springer, Berlin (1971)

  27. 27.

    Hartshorne, R.: Local Cohomology. Lecture Notes in Mathematics, vol. 41. Springer, Berlin (1967)

  28. 28.

    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

  29. 29.

    Hartshorne, R.: Generalized divisors on Gorenstein schemes. K-Theory 8(3), 287–339 (1994)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Illusie, L.: Complexe de de Rham–Witt et cohomologie cristalline. Ann. Sci. Ecole Norm. Sup. 12(4), 501–661 (1979)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Kashiwara, M., Schapira, P.: Categories and Sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 332. Springer, Berlin (2006)

  32. 32.

    Katz, N.M.: Nilpotent connections and the monodromy theorem: applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math. 39, 175–232 (1970)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Kawamata, Y.: Unobstructed deformations. J. Algebraic Geom. 1(2), 183–190 (1992)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Kondō, S., Schröer, S.: Kummer surfaces associated with group schemes. Manuscripta. Math. https://doi.org/10.1007/s00229-020-01257-4

  35. 35.

    Laumon, G., Moret-Bailly, L.: Champs Algebriques. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 39. Springer, Berlin (2000)

  36. 36.

    Liedtke, C.: Arithmetic moduli and lifting of Enriques surfaces. J. Reine Angew. Math. 706, 35–65 (2015)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Liedtke, C., Satriano, M.: On the birational nature of lifting. Adv. Math. 254, 118–137 (2014)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1989)

  39. 39.

    McLean, K.R.: Commutative artinian principal ideal rings. Proc. London Math. Soc. 26, 249–272 (1973)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Mehta, V., Ramanathan, A.: Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. 122(1), 27–40 (1985)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Mitchell, B.: Theory of Categories. Pure and Applied Mathematics, vol. 27. Academic Press, New York (1965)

  42. 42.

    Olsson, M.: Algebraic Spaces and Stacks. American Mathematical Society Colloquium Publications, vol. 62. American Mathematical Society, Providence (2016)

  43. 43.

    Oort, F., Mumford, D.: Deformations and liftings of finite, commutative group schemes. Invent. Math. 5, 317–334 (1968)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Partsch, H.: Deformations of elliptic fiber bundles in positive characteristic. Nagoya Math. J. 211, 79–108 (2013)

    MathSciNet  Article  Google Scholar 

  45. 45.

    Ran, Z.: Deformations of manifolds with torsion or negative canonical bundle. J. Algebraic Geom. 1(2), 279–291 (1992)

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Salomonsson, P.: Equations for some very special Enriques surfaces in characteristic two (2003). arXiv:math/0309210

  47. 47.

    Schlessinger, M.: Functors of artin rings. Trans. Amer. Math. Soc. 130, 208–222 (1968)

  48. 48.

    Schröer, S.: The \(T^1\)-lifting theorem in positive characteristics. J. Algebraic Geom. 12(4), 699–714 (2003)

    MathSciNet  Article  Google Scholar 

  49. 49.

    Schröer, S.: Kummer surfaces for the self-product of the cuspidal rational curve. J. Algebraic Geom. 16(2), 305–346 (2007)

    MathSciNet  Article  Google Scholar 

  50. 50.

    Schröer, S.: Enriques surfaces with normal K3-like coverings (2017). arXiv:1703.03081. J. Math. Soc. Japan (to appear)

  51. 51.

    Shepherd-Barron, N.: Weyl group covers for Brieskorn’s resolutions in all characteristics and the integral cohomology of \(G/P\). Michigan Math. J. https://doi.org/10.1307/mmj/1593741747

  52. 52.

    Srinivas, V.: Decomposition of the de Rham complex. Proc. Indian Acad. Sci. Math. Sci. 100(2), 103–106 (1990)

    MathSciNet  Article  Google Scholar 

  53. 53.

    Tian, G.: Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Petersson–Weil metric. In: Yau, S. (ed.) Mathematical Aspects of String Theory, pp. 629–646. World Scientific, Singapore (1987)

  54. 54.

    Todorov, A.N.: Applications of the Kähler–Einstein–Calabi–Yau metric to moduli of \(K3\) surfaces. Invent. Math. 61(3), 251–265 (1980)

  55. 55.

    Yobuko, F.: Quasi-frobenius-splitting and lifting of Calabi–Yau varieties in characteristic \(p\). Math. Z. 292(1–2), 307–316 (2019)

  56. 56.

    Yoneda, N.: On the homology theory of modules. J. Fac. Sci. Univ. Tokyo. Sect. I(7), 193–227 (1954)

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Zariski, O., Samuel, P.: Commutative Algebra, vol. I. Van Nostrand, Princeton (1958)

    Google Scholar 

Download references

Acknowledgements

I wish to thank Luc Illusie for valuable discussions, and the referees for thorough reading and helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Schröer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was conducted in the framework of the research training group GRK 2240: Algebro-geometric Methods in Algebra, Arithmetic and Topology, which is funded by the DFG.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schröer, S. The Deligne–Illusie Theorem and exceptional Enriques surfaces. European Journal of Mathematics (2021). https://doi.org/10.1007/s40879-021-00451-2

Download citation

Keywords

  • Arithmetic deformations
  • Enriques surfaces
  • Bielliptic surfaces
  • Vector bundles
  • Group schemes
  • Gerbes

Mathematics Subject Classification

  • 14D15
  • 14J28
  • 14J60
  • 14J27
  • 14L15
  • 18E10