Baird, P.: Stress-energy tensors and the Lichnerowicz Laplacian. J. Geom. Phys. 58(10), 1329–1342 (2008)
MathSciNet
Article
Google Scholar
Cheung, L.-F., Leung, P.-F.: The second variation formula for exponentially harmonic maps. Bull. Austral. Math. Soc. 59(3), 509–514 (1999)
MathSciNet
Article
Google Scholar
Chiang, Y.-J.: Developments of Harmonic Maps, Wave Maps and Yang–Mills Fields Into Biharmonic Maps. Biwave Maps and Bi-Yang–Mills Fields. Frontiers in Mathematics. Birkhäuser, Basel (2013)
Book
Google Scholar
Chiang, Y.-J.: Exponentially harmonic maps and their properties. Math. Nachr. 288(17–18), 1970–1980 (2015)
MathSciNet
Article
Google Scholar
Chiang, Y.-J.: Exponential harmonic maps, exponential stress energy and stability. Commun. Contemp. Math. 18(6), 1550076 (2016)
MathSciNet
Article
Google Scholar
Chiang, Y.-J.: Exponentially harmonic maps between Finsler manifolds. Manuscripta Math. 157(1–2), 101–119 (2018)
MathSciNet
Article
Google Scholar
Chiang, Y.J., Pan, H.: Exponentially harmonic maps. Acta Math. Sinica (Chin. Ser.) 58(1), 131–140 (2015) (in Chinese)
Chiang, Y.-J., Wolak, R.A.: Transversal wave maps and transversal exponential wave maps. J. Geom. 104(3), 443–459 (2013)
MathSciNet
Article
Google Scholar
Chiang, Y.-J., Yang, Y.-H.: Exponential wave maps. J. Geom. Phys. 57(12), 2521–2532 (2007)
MathSciNet
Article
Google Scholar
Dong, Y., Wei, S.W.: On vanishing theorems for vector bundle valued \(p\)-forms and their applications. Commun. Math. Phys. 304(2), 329–368 (2011)
MathSciNet
Article
Google Scholar
Duc, D.M., Eells, J.: Regularity of exponentially harmonic functions. Internat. J. Math. 2(4), 395–4098 (1991)
MathSciNet
Article
Google Scholar
Eells, J., Lemaire, L.: Some properties of exponentially harmonic maps. In: Bojarski, B., Zajączkowski, W., Ziemian, B. (eds.) Partial Differential Equations, Part 1, 2. Banach Center Publications, vol. 27, pp. 129–136. Polish Academy of Sciences, Warsaw (1992)
Eells Jr., J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964)
MathSciNet
Article
Google Scholar
El Soufi, A., Lejeune, A.: Indice de Morse des applications \(p\)-harmoniques. Ann. Inst. H. Poincaré Anal. Non Linéaire 13(2), 229–250 (1996)
MathSciNet
Article
Google Scholar
Gordon, W.B.: Convex functions and harmonic maps. Proc. Amer. Math. Soc. 33(2), 433–437 (1972)
MathSciNet
Article
Google Scholar
Hong, J.Q., Yang, Y.H.: Some results on exponentially harmonic maps. Chinese Ann. Math. Ser. A 14(6), 686–691 (1993). (in Chinese)
MathSciNet
MATH
Google Scholar
Hong, M.C.: On the conformal equivalence of harmonic maps and exponentially harmonic maps. Bull. Lond. Math. Soc. 24(5), 488–492 (1992)
MathSciNet
Article
Google Scholar
Kanfon, A.D., Füzfa, A., Lambert, D.: Some examples of exponentially harmonic maps. J. Phys. A 35(35), 7629–7639 (2002)
MathSciNet
Article
Google Scholar
Kawai, S.: \(p\)-harmonic maps and convex functions. Geom. Dedicata 74(3), 261–265 (1999)
MathSciNet
Article
Google Scholar
Liu, J.: Nonexistence of stable exponentially harmonic maps from or into compact convex hypersurfaces in \({\mathbb{R}}^{m+1}\). Turkish J. Math. 32(2), 117–126 (2008)
MathSciNet
MATH
Google Scholar
Liu, J.C.: Liouville-type theorems for exponentially harmonic maps. J. Lanzhou Univ. Nat. Sci. 41(6), 122–124 (2005). (in Chinese)
MathSciNet
MATH
Google Scholar
Omori, T.: On Eells–Sampson’s existence theorem for harmonic maps via exponentially harmonic maps. Nagoya Math. J. 201, 133–146 (2011)
MathSciNet
Article
Google Scholar
Omori, T.: On Sacks–Uhlenbeck’s existence theorem for harmonic maps via exponentially harmonic maps. Internat. J. Math. 23(10), 1250105 (2012)
MathSciNet
Article
Google Scholar
Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113(1), 1–24 (1981)
MathSciNet
Article
Google Scholar
Zhang, Y.T., Wang, Y.N., Liu, J.Z.: Some results on negative exponential harmonic maps. Beijing Shifan Daxue Xuebao 34(3), 324–329 (1998) (in Chinese)