Skip to main content
Log in

Splitting conjectures for uniform flag bundles

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We present here some conjectures on the diagonalizability of uniform principal bundles on rational homogeneous spaces, that are natural extensions of classical theorems on uniform vector bundles on the projective space, and study the validity of these conjectures in the case of classical groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballico, E.: Uniform vector bundles on quadrics. Ann. Univ. Ferrara Sez. VII (N.S.) 27, 135–146 (1982)

    MathSciNet  MATH  Google Scholar 

  2. Ballico, E.: Uniform vector bundles of rank \((n+1)\) on \({{ P}}_{n}\). Tsukuba J. Math. 7(2), 215–226 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4. Springer, Berlin (1984)

    Book  Google Scholar 

  4. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. 57, 115–207 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  5. Drezet, J.-M.: Exemples de fibres uniformes non homogènes sur \({{\bf P}}_{n-}\). C. R. Acad. Sci. Paris Sér. A B 291(2), A125–A128 (1980)

    Google Scholar 

  6. Eisenbud, D., Harris, J.: 3264 and All That—A Second Course in Algebraic Geometry. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  7. Elencwajg, G.: Des fibrés uniformes non homogènes. Math. Ann. 239(2), 185–192 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elencwajg, G., Hirschowitz, A., Schneider, M.: Les fibrés uniformes de rang au plus \(n\) sur \({{ P}}_{n}({{ C}})\) sont ceux qu’on croit. In: Vector Bundles and Differential Equations. Progress in Mathematics, vol. 7, Birkhäuser, Boston, pp. 37–63 (1980)

  9. Ellia, Ph.: Sur les fibrés uniformes de rang \((n+1)\) sur \({{\bf P }}^{n}\). Mém. Soc. Math. France (N.S.) 7, 1–60 (1982)

  10. Fulton, W.: Flags, Schubert polynomials, degeneracy loci, and determinantal formulas. Duke Math. J. 65(3), 381–420 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fulton, W.: Intersection Theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 2. Springer, Berlin (1998)

  12. Fulton, W., Harris, J.: Representation Theory. Graduate Texts in Mathematics, vol. 129. Springer, New York (1991)

    Google Scholar 

  13. Fulton, W., MacPherson, R.D., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J. Algebraic Geom. 4(1), 181–193 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphére de Riemann. Amer. J. Math. 79, 121–138 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guyot, M.: Caractérisation par l’uniformité des fibrés universels sur la grassmanienne. Math. Ann. 270(1), 47–62 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hiller, H.: Geometry of Coxeter Groups. Research Notes in Mathematics, vol. 54. Pitman, Boston (1982)

    MATH  Google Scholar 

  17. Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 21. Springer, New York (1975)

    Book  Google Scholar 

  18. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1978)

    Google Scholar 

  19. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  20. Landsberg, J.M., Manivel, L.: On the projective geometry of rational homogeneous varieties. Comment. Math. Helv. 78(1), 65–100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lazarsfeld, R.: Some applications of the theory of positive vector bundles. In: Greco, S., Strano, R. (eds.) Complete Intersections. Lecture Notes in Mathematics, vol. 1092, pp. 29–61. Springer, Berlin (1984)

    Chapter  Google Scholar 

  22. Muñoz, R., Occhetta, G., Solá Conde, L.E.: Rank two Fano bundles on \({\mathbb{G}}(1,4)\). J. Pure Appl. Algebra 216(10), 2269–2273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Muñoz, R., Occhetta, G., Solá Conde, L.E.: Uniform vector bundles on Fano manifolds and applications. J. Reine Angew. Math. 664, 141–162 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Muñoz, R., Occhetta, G., Solá Conde, L.E.: On uniform flag bundles on Fano manifolds (2016). arXiv:1610.05930. To appear in Kyoto Journal of Mathematics

  25. Muñoz, R., Occhetta, G., Solá Conde, L.E., Watanabe, K.: Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle. Math. Ann. 361(3), 583–609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Occhetta, G., Solá Conde, L.E., Wiśniewski, J.A.: Flag bundles on Fano manifolds. J. Math. Pures Appl. 106(4), 651–669 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Okonek, Chr., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces. Progress in Mathematics, vol. 3. Birkhäuser, Boston (1980)

  28. Pan, X.: Triviality and split of vector bundles on rationally connected varieties. Math. Res. Lett. 22(2), 529–547 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sato, E.: Uniform vector bundles on a projective space. J. Math. Soc. Japan 28(1), 123–132 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier Grenoble 6, 1–42 (1955–1956)

  31. Tango, H.: On morphisms from projective space \(P^{n}\) to the Grassmann variety \({Gr}{(n,d)}\). J. Math. Kyoto Univ. 16(1), 201–207 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Van de Ven, A.: On uniform vector bundles. Math. Ann. 195, 245–248 (1972)

    MathSciNet  MATH  Google Scholar 

  33. Wiśniewski, J.A.: Uniform vector bundles on Fano manifolds and an algebraic proof of Hwang–Mok characterization of Grassmannians. In: Bauer, I., et al. (eds.) Complex Geometry, pp. 329–340. Springer, Berlin (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Occhetta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Roberto Muñoz and Luis E. Solá Conde are supported by the Spanish Government Project MTM2015-65968-P, Gianluca Occhetta and Luis E. Solá Conde are supported by PRIN Project 2015EYPTSB_002: “Geometria delle varietà algebriche”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, R., Occhetta, G. & Solá Conde, L.E. Splitting conjectures for uniform flag bundles. European Journal of Mathematics 6, 430–452 (2020). https://doi.org/10.1007/s40879-019-00343-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-019-00343-6

Keywords

Mathematics Subject Classification

Navigation