The Lax–Sato integrable heavenly equations on functional supermanifolds and their Lie-algebraic structure

  • Oksana Hentosh
  • Yarema PrykarpatskyEmail author
Research Article


A Lie-algebraic approach to constructing the Lax–Sato integrable superanalogs of heavenly equations by use of the loop Lie algebra of superconformal vector fields on a 1|N-dimensional supertorus is proposed. In the framework of this approach integrable superanalogs of the Mikhalev–Pavlov heavenly equation are obtained for all \(N\in {\mathbb {N}} {\setminus } \{ 4,5 \}\) as well as Shabat type reductions for all \(N\in {\mathbb {N}}\). The Lax–Sato integrable superanalogs of the generalized Liouville heavenly equations are found by means of the Lie algebra of holomorphic in “spectral” parameter superconformal vector fields on a 1|N-dimensional complex supertorus.


Heavenly type equations Lax–Sato integrability Superconformal vector fields Adler–Kostant–Symes theory Casimir invariants 

Mathematics Subject Classification

37K05 37K30 37K65 35Q75 35Q35 17B80 58C50 



The authors cordially thank Prof. Maciej Błaszak, Prof. Błażej Szablikowski and Prof. Jan Cieśliński for fruitful discussions during the International Conference in Functional Analysis dedicated to the 125th anniversary of Stefan Banach held on September 18–23, 2017, in Lviv, Ukraine.


  1. 1.
    Berezin, F.A.: Introduction to Algebra and Analysis with Anticommuting Variables. Moscow State University, Moscow (1983) (in Russian)Google Scholar
  2. 2.
    Blackmore, D., Hentosh, E.O., Prykarpatski, A.K.: The novel Lie-algebraic approach to studying integrable heavenly type multi-dimensional dynamical systems. J. Gen. Lie Theory Appl. 11(3), # 286 (2017)Google Scholar
  3. 3.
    Blackmore, D., Prykarpatsky, A.K., Samoylenko, V.Hr.: Nonlinear Dynamical Systems of Mathematical Physics. World Scientific, Hackensack (2011)Google Scholar
  4. 4.
    Bogdanov, L.V., Dryuma, V.S., Manakov, S.V.: Dunajski generalization of the second heavenly equation: dressing method and the hierarchy. J. Phys. A 40(48), 14383–14393 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bogdanov, L.V., Konopelchenko, B.G.: Grassmannians \({\rm Gr}(N-1, N+1)\), closed differential \(N-1\)-forms and \(N\)-dimensional integrable systems. J. Phys. A 46(8), # 085201 (2013). arXiv:1208.6129v2 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bogdanov, L.V., Pavlov, M.V.: Linearly degenerate hierarchies of quasiclassical SDYM type. J. Math. Phys. 58(9), # 093505 (2017). arXiv:1603.00238v2 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dunajski, M., Ferapontov, E.V., Kruglikov, B.: On the Einstein–Weyl and conformal self-duality equations. J. Math. Phys. 56(8), #083501 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dunajski, M., Kryński, W.: Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs. Math. Proc. Cambridge Philos. Soc. 157(1), 139–150 (2014). arXiv:1301.0621v2 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Faddeev, L.D., Takhtadjan, L.A.: Hamiltonian Methods in the Theory of Solitons. Classics in Mathematics. Springer, Berlin (2007)Google Scholar
  10. 10.
    Ferapontov, E.V., Moss, J.: Linearly degenerate partial differential equations and quadratic line complexes. Comm. Anal. Geom. 23(1), 91–127 (2015). arXiv:1204.2777v1 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hentosh, O.Ye.: Compatibly bi-Hamiltonian superconformal analogs of Lax-integrable nonlinear dynamical systems. Ukrainian Math. J. 58(7), 1001–1015 (2006)Google Scholar
  12. 12.
    Hentosh, O.E.: The Lax integrable Laberge–Mathieu hierarchy of supersymmetric nonlinear dynamical systems and its finite-dimensional Neumann type reduction. Ukrainian Math. J. 61(7), 1075–1092 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hentosh, O.E., Prykarpatsky, Ya.A., Blackmore, D., Prykarpatski, A.K.: Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle. J. Geom. Phys. 120, 208–227 (2017)Google Scholar
  14. 14.
    Kruglikov, B., Morozov, O.: Integrable dispersionless PDEs in 4D, their symmetry pseudogroups and deformations. Lett. Math. Phys. 105(12), 1703–1723 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kulish, P.P.: Analog of the Korteweg–de Vries equation for the superconformal algebra. J. Soviet Math. 41(2), 970–975 (1988)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Manakov, S.V., Santini, P.M.: Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation. Phys. Lett. A 359(6), 613–619 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Martínez Alonso, L.M., Shabat, A.B.: Hydrodynamic reductions and solutions of a universal hierarchy. Theor. Math. Phys. 140(2), 1073–1085 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mikhalev, V.G.: On the Hamiltonian formalism of Korteweg–de Vries type hierarchies. Funct. Anal. Appl. 26(2), 140–142 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Misiołek, G.: A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24(3), 203–208 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ovsienko, V.: Bi-Hamiltonian nature of the equation \(u_{tx}=u_{xy}u_{y}-u_{yy}u_{x}\). Adv. Pure Appl. Math. 1(1), 7–17 (2010). arXiv:0802.1818v1 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ovsienko, V., Roger, C.: Looped cotangent Virasoro algebra and non-linear integrable systems in dimension \(2+1\). Comm. Math. Phys. 273(2), 357–378 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pavlov, M.V.: Integrable hydrodynamic chains. J. Math. Phys. 44(9), 4134–4156 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Plebański, J.F.: Some solutions of complex Einstein equations. J. Math. Phys. 16(12), 2395–2402 (1975)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Prykarpatski, A.K., Hentosh, O.E., Prykarpatsky, Ya.A.: Geometric structure of the classical Lagrange–d’Alambert principle and its application to the integrable nonlinear dynamical systems. Mathematics 5(4), # 75 (2017)Google Scholar
  25. 25.
    Radul, A.O.: Lie algebras of differential operators, their central extensions and \(W\)-algebras. Funct. Anal. Appl. 25(1), 25–39 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Reyman, A.G., Semenov-Tian-Shansky, M.A.: Integrable Systems. Computer Research Institute, Moscow-Izhevsk (2003) (in Russian)Google Scholar
  27. 27.
    Sergyeyev, A., Szablikowski, B.M.: Central extensions of cotangent universal hierarchy: \((2+1)\)-dimensional bi-Hamiltonian systems. Phys. Lett. A 372(47), 7016–7023 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sheftel, M.B., Yazıcı, D., Malykh, A.A.: Recursion operators and bi-Hamiltonian structure of the general heavenly equation. J. Geom. Phys. 116, 124–139 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Takasaki, K., Takebe, T.: Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 7(5), 743–808 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Vladimirov, V.S., Volovich, I.V.: Superanalysis. I. Differential calculus. Theor. Math. Phys. 59(1), 317–335 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, The NAS of UkraineLvivUkraine
  2. 2.Department of Applied MathematicsUniversity of Agriculture in KrakówKrakówPoland

Personalised recommendations