Skip to main content
Log in

Cyclicity of nilpotent centers with minimum Andreev number

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider polynomial families of real planar vector fields for which the origin is a monodromic nilpotent singularity having minimum Andreev number. There the centers are characterized by the existence of a formal inverse integrating factor. For such families we give, under some assumptions, global bounds on the maximum number of limit cycles that can bifurcate from the singularity under perturbations within the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algaba, A., García, C., Giné, J.: Nilpotent centres via inverse integrating factors. European J. Appl. Math. 27(5), 781–795 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Algaba, A., García, C., Giné, J., Llibre, J.: The center problem for \({\mathbb{Z}}_2\)-symmetric nilpotent vector fields. J. Math. Anal. Appl. 466(1), 183–198 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Algaba, A., García, C., Reyes, M.: Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems. Chaos Solitons Fractals 45(6), 869–878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Álvarez, M.J., Gasull, A.: Monodromy and stability for nilpotent critical points. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(4), 1253–1265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Álvarez, M.J., Gasull, A.: Generating limit cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl. 318(1), 271–287 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andreev, A.F.: Investigation of the behaviour of the integral curves of a system of two differential equations in the neighbourhood of a singular point. In: Twelve Papers on Function Theory, Probability and Differential Equations. American Mathematical Society Translations Ser. 2, vol. 8, pp. 187–207. American Mathematical Society, Providence (1958) [Russian original: Vestnik Leningrad. Univ. 10(8), 43–65 (1955)]

  7. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. American Mathematical Society Translations Ser. 1, Translation No. 100, 19 pp. American Mathematical Society, Providence (1954) [Russian original: Mat. Sb. 30(72)(1), 181–196 (1952)]

  8. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: Local analytic integrability for nilpotent centers. Ergodic Theory Dynam. Systems 23(2), 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cherkas, L.A.: Conditions for a Liénard equation to have a centre. Differential Equations 12(2), 201–206 (1976)

    MathSciNet  MATH  Google Scholar 

  10. Christopher, C.: Estimating limit cycles bifurcations from centers. In: Wang, D., Zheng, Z. (eds.) Differential Equations with Symbolic Computations. Trends in Mathematics, pp. 23–35. Birkhäuser, Basel (2005)

  11. Christopher, C., Li, C.: Limit Cycles of Differential Equations. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  12. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-1-1. A computer algebra system for polynomial computations (2018). http://www.singular.uni-kl.de

  13. Decker, W., Pfister, G., Schönemann, H., Laplagne, S.: primdec.lib. Singular 4-1-1 library for computing primary decomposition and radical of ideals (2018)

  14. Écalle, J.: Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Actualités Mathématiques. Hermann, Paris (1992)

    MATH  Google Scholar 

  15. Ferčec, B., Levandovskyy, V., Romanovski, V.G., Shafer, D.S.: Bifurcation of critical periods of polynomial systems. J. Differential Equations 259(8), 3825–3853 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. García, I.A.: Formal inverse integrating factors and the nilpotent center problem. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 26(1), # 1650015 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. García, I.A.: Cyclicity of some symmetric nilpotent centers. J. Differential Equations 260(6), 5356–5377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. García, I.A., Giacomini, H., Grau, M.: The inverse integrating factor and the Poincaré map. Trans. Amer. Math. Soc. 362(7), 3591–3612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. García, I.A., Giacomini, H., Grau, M.: Generalized Hopf bifurcation for planar vector fields via the inverse integrating factor. J. Dynam. Differential Equations 23(2), 251–281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. García, I.A., Maza, S., Shafer, D.S.: Cyclicity of polynomial nondegenerate centers on center manifolds. J. Differential Equations 265(11), 5767–5808 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. García, I.A., Shafer, D.S.: Cyclicity of a class of polynomial nilpotent center singularities. Discrete Contin. Dyn. Syst. 36(5), 2497–2520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gasull, A., Torregrosa, J.: Center problem for several differential equations via Cherkas’ method. J. Math. Anal. Appl. 228(2), 322–343 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Vol. I. Applied Mathematical Sciences, vol. 51. Springer, New York (1985)

    Book  MATH  Google Scholar 

  24. Il’yashenko, Yu.S.: Finiteness Theorems for Limit Cycles. Translations of Mathematical Monographs, vol. 94. American Mathematical Society, Providence (1991)

  25. Levandovskyy, V., Logar, A., Romanovski, V.G.: The cyclicity of a cubic system. Open Syst. Inf. Dyn. 16(4), 429–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Li, J.: New study on the center problem and bifurcations of limit cycles for the Lyapunov system (I). Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19(11), 3791–3801 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Li, J.: New study on the center problem and bifurcations of limit cycles for the Lyapunov system (II). Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19(9), 3087–3099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Y., Li, J.: On third-order nilpotent critical points: integral factor method. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21(5), 1293–1309 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lyapunov, A.M.: Stability of Motion, vol. 30. Mathematics in Science and Engineering. Academic Press, New York (1966)

    MATH  Google Scholar 

  30. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17. Springer, New York (1994)

    Book  Google Scholar 

  31. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems. Birkhäuser, Boston (2009)

    MATH  Google Scholar 

  32. Stróżyna, E., Żołądek, H.: The analytic and formal normal form for the nilpotent singularity. J. Differential Equations 179(2), 479–537 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Su, J., Yang, J., Han, M.: Hopf bifurcation of Liénard systems by perturbing a nilpotent center. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22(8), #1250203 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac A. García.

Additional information

The author is partially supported by the MINECO Grant Number MTM2017-84383-P and the AGAUR Grant Number 2017SGR-1276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, I.A. Cyclicity of nilpotent centers with minimum Andreev number. European Journal of Mathematics 5, 1293–1330 (2019). https://doi.org/10.1007/s40879-018-0304-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-018-0304-3

Keywords

Mathematics Subject Classification

Navigation