Abstract
We propose and study a generalised Kawada–Satake method for Mackey functors in the class field theory of positive characteristic. The root of this method is in the use of explicit pairings, such as the Artin–Schreier–Witt pairing, for groups describing abelian extensions. We separate and simplify the algebraic component of the method and discuss a relation between the existence theorem in class field theory and topological reflexivity with respect to the explicit pairing. We apply this method to derive higher local class field theory of positive characteristic, using advanced properties of topological Milnor K-groups of such fields.
This is a preview of subscription content, access via your institution.
References
Artin, E., Tate, J.T.: Class Field Theory. W.A. Benjamin, New York (1968)
Chasco, M.J., Dikranjan, D., Martín-Peinador, E.: A survey of reflexivity of abelian topological groups. Topology Appl. 159(9), 2290–2309 (2012)
Fesenko, I.: Explicit Constructions in Local Class Field Theory. Ph.D. thesis, St. Petersburg University (1987)
Fesenko, I.B.: Class field theory of multidimensional local fields of characteristic \(0\), with residue field of positive characteristic. St. Petersburg Math. J. 3(3), 649–678 (1992)
Fesenko, I.B.: Multidimensional local class field theory. II. St. Petersburg Math. J. 3(5), 1103–1126 (1992)
Fesenko, I.B.: Local class field theory: perfect residue field case. Russian Acad. Sci. Izv. Math. 43(1), 65–81 (1994)
Fesenko, I.B.: Abelian local \(p\)-class field theory. Math. Ann. 301(3), 561–586 (1995)
Fesenko, I.B.: On general local reciprocity maps. J. Reine Angew. Math. 473, 207–222 (1996)
Fesenko, I.: Noncommutative local reciprocity maps. In: Miyake, K. (ed.) Class Field Theory—Its Centenary and Prospect. Advanced Studies in Pure Mathematics, vol. 30, pp. 63–78. Mathematical Society of Japan, Tokyo (2001). https://www.maths.nottingham.ac.uk/personal/ibf/ncr.pdf
Fesenko, I.: On the image of noncommutative reciprocity map. Homology Homotopy Appl. 7(3), 53–62 (2005). https://www.maths.nottingham.ac.uk/personal/ibf/imn.pdf
Fesenko, I.B.: Sequential topologies and quotients of Milnor \(K\)-groups of higher local fields. St. Petersburg Math. J. 13(3), 485–501 (2002). https://www.maths.nottingham.ac.uk/personal/ibf/stqk.pdf
Fesenko, I.: Parshin’s higher local class field theory in characteristic \(p\). In: Fesenko, I., Kurihara, M. (eds.) Invitation to Higher Local Fields. Geometry and Topology Monographs, vol. 3, pp. 75–79. Geometry and Topology Publications, Coventry (2000). https://msp.org/gtm/2000/03/
Fesenko, I.: Analysis on arithmetic schemes. II. J. \(K\)-Theory 5(3), 437–557 (2010)
Fesenko, I.: Class field theory guidance and three fundamental developments in arithmetic of elliptic curves (2018). https://www.maths.nottingham.ac.uk/personal/ibf/232.pdf
Fesenko, I., Kurihara, M. (eds.): Invitation to Higher Local Fields. Geometry and Topology Monographs, vol. 3. Geometry and Topology Publications, Coventry (2000). https://www.maths.nottingham.ac.uk/personal/ibf/volume.html
Fesenko, I.B., Vostokov, S.V.: Local Fields and Their Extensions. 2nd extended edn. Translations of Mathematical Monographs, vol. 121. American Mathematical Society, Providence (2002). https://www.maths.nottingham.ac.uk/personal/ibf/book/book.html
Ikeda, K.I., Serbest, E.: Fesenko reciprocity map. St. Petersburg Math. J. 20(3), 407–445 (2009)
Ikeda, K.I., Serbest, E.: Generalized Fesenko reciprocity map. St. Petersburg Math. J. 20(4), 593–624 (2009)
Ikeda, K.I., Serbest, E.: Non-abelian local reciprocity law. Manuscripta Math. 132(1–2), 19–49 (2010)
Inaba, E.: On matrix equations for Galois extensions of fields of characteristic p. Nat. Sci. Rep. Ochanomizu Univ. 12(2), 26–36 (1961)
Inaba, E.: On generalized Artin–Schreier equations. Nat. Sci. Rep. Ochanomizu Univ. 13(2), 1–13 (1962)
Kaplan, S.: Extensions of the Pontrjagin duality, II: direct and inverse limits. Duke Math. J. 17, 419–435 (1950)
Kato, K.: A generalization of local class field theory by using K-groups. I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26(2), 303–376 (1979)
Kato, K.: A generalization of local class field theory by using K-groups. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(3), 603–683 (1980)
Kato, K.: Galois cohomology of complete discrete valuation fields. In: Dennis, R.K. (ed.) Algebraic K-Theory, Part II. Lecture Notes in Mathematics, vol. 967, pp. 215–238. Springer, Berlin (1982)
Kato, K., Saito, S.: Two-dimensional class field theory. In: Ihara, Y. (ed.) Galois Groups and Their Representations. Advanced Studies in Pure Mathematics, vol. 2, pp. 103–152. North-Holland, Amsterdam (1983)
Kawada, Y.: Class formations. Duke Math. J. 22, 165–177 (1955)
Kawada, Y.: Class formations. In: Lewis, D.J. (ed.) 1969 Number Theory Institute. Proceedings of Symposia in Pure Mathematics, vol. 20, pp. 96–114. American Mathematical Society, Providence (1971)
Kawada, Y., Satake, I.: Class formations. II. J. Fac. Sci. Univ. Tokyo Sect. I. 7, 353–389 (1956)
Koya, Y.: A generalization of class formation by using hypercohomology. Invent. Math. 101(3), 705–715 (1990)
Lang, S.: Algebra. Addison-Wesley, Reading (1965)
Madunts, A.I., Zhukov, I.B.: Multidimensional complete fields: topology and other basic constructions. In: Proceedings of the St. Petersburg Mathematical Society. vol. 3. American Mathematical Society Translations (Ser. 2), vol. 166, pp. 1–34 (1995)
Mochizuki, Sh.: Topics in absolute anabelian geometry III: global reconstruction algorithms. J. Math. Sci. Univ. Tokyo 22(4), 939–1156 (2015). Available with comments from http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html
Neukirch, J.: Class Field Theory. Grundlehren der Mathematischen Wissenschaften, vol. 280. Springer, Berlin (1986)
Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften, vol. 322. Springer, Berlin (1999)
Parshin, A.N.: Local class field theory. Proc. Steklov Inst. Math. 165, 157–185 (1985)
Parshin, A.N.: Galois cohomology and the Brauer group of local fields. Proc. Steklov Inst. Math. 183, 191–201 (1991)
Sekiguchi, K.: Class field theory of p-extensions over a formal power series field with a p-quasifinite coefficient field. Tokyo J. Math. 6(1), 167–190 (1983)
Spieß, M.: Class formations and higher-dimensional local class field theory. J. Number Theory 62(2), 273–283 (1997)
Syder, K.: Two-Dimensional Local-Global Class Field Theory in Positive Characteristic. Ph.D. thesis, University of Nottingham (2014). https://arxiv.org/abs/1403.6747
Webb, P.: A Guide to Mackey Functors. http://web.math.rochester.edu/people/faculty/doug/otherpapers/WebbMF.pdf
Weil, A.: Basic Number Theory. Die Grundlehren der Mathematischen Wissenschaften, vol. 144. Springer, New York (1967)
Witt, E.: Der Existenzsatz für abelschen Funktionenkörper. J. Reine Angew. Math. 173, 43–51 (1935)
Witt, E.: Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung \(p^f\). J. Reine Angew. Math. 174, 237–245 (1936)
Witt, E.: Zyklische Körper und Algebren der Charakteristik \(p\) vom Grad \(p^n\). J. Reine Anwew. Math. 176, 126–140 (1937)
Yoon, S.H.: Explicit Class Field Theory: One-Dimensional and Higher-Dimensional. Ph.D. thesis, University of Nottingham (2017)
Zhukov, I.: Milnor and topological \(K\)-groups of higher-dimensional complete fields. St. Petersburg Math. J. 9(1), 69–105 (1998)
Acknowledgements
It is our great pleasure to dedicate this paper to Sasha Beilinson whose inspirational mathematical vision and work are beautifully complemented by his compassion, openness and kindness.
Author information
Authors and Affiliations
Corresponding author
Additional information
To Sasha Beilinson on the occasion of his 60th birthday
Work on this paper was partially supported by EPSRC programme Grant ‘Symmetries and Correspondences’ EP/M024830.
Rights and permissions
About this article
Cite this article
Fesenko, I.B., Vostokov, S.V. & Yoon, S.H. Generalised Kawada–Satake method for Mackey functors in class field theory. European Journal of Mathematics 4, 953–987 (2018). https://doi.org/10.1007/s40879-018-0245-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40879-018-0245-x
Keywords
- Class field theory
- Higher fields
- Higher class field theory
- Witt vectors
- Reflexivity for non-locally compact groups
Mathematics Subject Classification
- 19F05
- 13F35
- 46B10