Wavelet frames related to Walsh functions
Research Article
First Online:
Received:
Revised:
Accepted:
- 3 Downloads
Abstract
We describe three types of compactly supported wavelet frames associated with Walsh functions: (1) MRA-based tight frames, (2) frames obtained from the Daubechies-type “admissible condition”, and (3) frames based on the Walsh–Parseval type kernels. Parametric wavelet sets for Vilenkin groups and some related results are also discussed.
Keywords
Wavelets Frames Walsh functions Vilenkin groupsReferences
- 1.Agaev, G.H., Vilenkin, N.Ya., Dzhafarli, G.M., Rubinstein, A.I.: Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups. ELM, Baku (1981) (in Russian)Google Scholar
- 2.Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM, Philadelphia (1992)Google Scholar
- 3.Dong, D., Shen, Z.: MRA-based wavelet frames and applications. In: Zhao, H. (ed.) Mathematics in Image Processing. IAS/Park City Mathematics Series, vol. 19, pp. 5–156. American Mathematical Society, Providence (2013)Google Scholar
- 4.Farkov, Yu.A.: Orthogonal wavelets with compact support on locally compact abelian groups. Izv. Math. 69(3), 623–650 (2005)Google Scholar
- 5.Farkov, Yu.A.: Orthogonal wavelets on direct products of cyclic groups. Math. Notes 82(5–6), 843–859 (2007)Google Scholar
- 6.Farkov, Yu.A.: Multiresolution analysis and wavelets on Vilenkin groups. Facta Univ. (Niš) Ser. Electron. Energy 21(3), 309–325 (2008)Google Scholar
- 7.Farkov, Yu.A.: On wavelets related to the Walsh series. J. Approx. Theory 161(1), 259–279 (2009)Google Scholar
- 8.Farkov, Yu.A.: Examples of frames on the Cantor dyadic group. J. Math. Sci. (N. Y.) 187(1), 22–34 (2012)Google Scholar
- 9.Farkov, Yu.A.: Periodic wavelets in Walsh analysis. Commun. Math. Appl. 3(3), 223–242 (2012)Google Scholar
- 10.Farkov, Yu.A.: Constructions of MRA-based wavelets and frames in Walsh analysis. Poincare J. Anal. Appl. 2015(2), 13–36 (2015)Google Scholar
- 11.Farkov, Yu.A.: Orthogonal wavelets in Walsh analysis. In: Lukashenko, T.P., Solodov, A.P. (eds.) Generalized Integrals and Harmonic Analysis. Contemporary Problems of Mathematics and Mechanics, vol. 11, pp. 62–75. Moscow State University, Moscow (2016) (in Russian)Google Scholar
- 12.Farkov, Yu.A.: Nonstationary multiresolution analysis for Vilenkin groups. In: 2017 International Conference on Sampling Theory and Applications (SampTA, Tallinn, Estonia, 3–7 July 2017), pp. 595–598Google Scholar
- 13.Farkov, Yu.A., Lebedeva, E., Skopina, M.: Wavelet frames on Vilenkin groups and their approximation properties. Int. J. Wavelets Multiresolut. Inf. Process. 13(5), 1550036 (2015)Google Scholar
- 14.Farkov, Yu.A., Rodionov, E.A.: Algorithms for wavelet construction on Vilenkin groups. \(p\)-Adic Numbers Ultrametric Anal. Appl. 3(3), 181–195 (2011)Google Scholar
- 15.Farkov, Yu.A., Rodionov, E.A.: On biorthogonal discrete wavelet bases. Int. J. Wavelets Multiresolut. Inf. Process. 13(1), 1550002 (2015)Google Scholar
- 16.Fine, N.J.: On the Walsh functions. Trans. Amer. Math. Soc. 65(3), 372–414 (1949)MathSciNetCrossRefMATHGoogle Scholar
- 17.Golubov, B., Efimov, A., Skvortsov, V.: Walsh Series and Transforms. Mathematics and Its Applications (Soviet Series), vol. 64. Kluwer, Dordrecht (1991)CrossRefMATHGoogle Scholar
- 18.Han, D., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates. Student Mathematical Library, vol. 40. American Mathematical Society, Providence (2007)MATHGoogle Scholar
- 19.Hernández, E., Wess, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
- 20.Krivoshein, A., Protasov, V., Skopina, M.: Multivariate Wavelet Frames. Industrial and Applied Mathematics. Springer, Singapore (2016)MATHGoogle Scholar
- 21.Lang, W.C.: Orthogonal wavelets on the Cantor dyadic group. SIAM J. Math. Anal. 27(1), 305–312 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 22.Lang, W.C.: Wavelet analysis on the Cantor dyadic group. Houston J. Math. 24(3), 533–544 (1998)MathSciNetMATHGoogle Scholar
- 23.Lukomskii, S.F., Berdnikov, G.S.: \(N\)-valid trees in wavelet theory on Vilenkin groups. Int. J. Wavelets Multiresolut. Inf. Process. 13(5), 1550037 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 24.Mansour, M.F.: Subspace design of compactly supported orthonormal wavelets. J. Fourier Anal. Appl. 20(1), 66–90 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 25.Protasov, V.Yu., Farkov, Yu.A.: Dyadic wavelets and refinable functions on a half-line. Sb. Math. 197(9–10), 1529–1558 (2006)Google Scholar
- 26.Rodionov, E.A.: On applications of wavelets in digital signal processing. Izv. Saratov Univ. (N.S.), Ser. Math. Mech Inform. 16(2), 217–225 (2016) (in Russian)Google Scholar
- 27.Ron, A., Shen, Z.: Compactly supported tight affine spline frames in \(L_2(\mathbb{R}^d)\). Math. Comput. 67(221), 191–207 (1998)CrossRefMATHGoogle Scholar
- 28.Schipp, F., Wade, W.R., Simon, P.: Walsh Series. Adam Hilger, Bristol (1990)MATHGoogle Scholar
- 29.Vilenkin, N.Ya.: On a class of complete orthonormal systems. Amer. Math. Soc. Transl. 28, 1–35 (1963)Google Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018