Skip to main content
Log in

Arbitrarily large Galois orbits of non-homeomorphic surfaces

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

It has recently been proved that any element \(\sigma \) of the absolute Galois group \(\mathrm{Gal}\,\overline{\mathbb {Q}}/{\mathbb Q}\) different from the identity and complex conjugation conjugates some surface S into a surface \(S^{\sigma }\) with non-isomorphic fundamental group. Here we use group theory to construct, for each integer \(n\geqslant 0\), an n-dimensional family of complex surfaces whose conjugates under \(\mathrm{Gal}\,\overline{\mathbb {Q}}/{\mathbb Q}\) exhibit arbitrarily many non-isomorphic fundamental groups. These fundamental groups nevertheless have isomorphic profinite completions. The surfaces constructed are isogenous to higher products via actions of groups \(\mathrm{PGL}_2(p)\) on algebraic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abelson, H.: Topologically distinct conjugate varieties with finite fundamental group. Topology 13(2), 161–176 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Accola, R.D.M.: On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc. 131(2), 398–408 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artal Bartolo, E., Carmona Ruber, J., Cogolludo Agustín, J.I.: Effective invariants of braid monodromy. Trans. Amer. Math. Soc. 359(1), 165–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, I., Catanese, F., Grunewald, F.: Beauville surfaces without real structures. In: Bogomolov, F., Tschinkel, Yu. (eds.) Geometric Methods in Algebra and Number Theory. Progress in Mathematics, vol. 235, pp. 1–42. Birkhäuser, Boston (2005)

    Chapter  Google Scholar 

  5. Bauer, I., Catanese, F., Grunewald, F.: Chebycheff and Belyi polynomials, dessins d’enfants, Beauville surfaces and group theory. Mediterr. J. Math. 3(2), 121–146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauer, I., Catanese, F., Grunewald, F.: Faithful actions of the absolute Galois group on connected components of moduli spaces. Invent. Math. 199(3), 859–888 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beauville, A.: Surfaces Algébriques Complexes. Astérisque, vol. 54. Société Mathématique de France, Paris (1978)

  8. Beauville, A.: Complex Algebraic Surfaces. London Mathematical Society Student Texts, vol. 34. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  9. Belyĭ, G.V.: On Galois extensions of a maximal cyclotomic field. Math. USSR-Izv. 14(2), 247–256 (1980)

    Article  MATH  Google Scholar 

  10. Bridson, M.R., Conder, M.D.E., Reid, A.W.: Determining Fuchsian groups by their finite quotients. Israel J. Math. 214(1), 1–41 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Catanese, F.: Fibred surfaces, varieties isogenous to a product and related moduli spaces. Amer. J. Math. 122(1), 1–44 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Charles, F.: Conjugate varieties with distinct real cohomology algebras. J. Reine Angew. Math. 630, 125–139 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Coxeter, H.S.M., Edge, W.L.: The simple groups \({{\rm PSL}}(2,7)\) and \({{\rm PSL}}(2,11)\). C. R. Math. Rep. Acad. Sci. Canada 5(5), 201–206 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Dickson, L.E.: Linear Groups. Dover, New York (1958)

    Google Scholar 

  15. Digne, F., Michel, J.: Representations of Finite Groups of Lie Type. London Mathematical Society Student Texts, vol. 21. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  16. Edge, W.L.: The isomorphism between \({\rm LF}(2,3^2)\) and \({\fancyscript {A}}_6\). J. London Math. Soc. s1–30(2), 172–185 (1955)

  17. Edge, W.L.: A setting for the group of the bitangents. Proc. London Math. Soc. s3–10(1), 583–603 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Edge, W.L.: A permutation representation of the group of the bitangents. J. London Math. Soc. s1–36(1), 340–344 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Edge, W.L.: Permutation representations of a group of order 9,196,830,720. J. London Math. Soc. 2(4), 753–762 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Edge, W.L.: Klein’s encounter with the simple group of order 660. Proc. London Math. Soc. s3–24(4), 647–668 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Edge, W.L.: \({\rm PGL}(2,7)\) and \({\rm PSL}(2,7)\). Mitt. Math. Sem. Giessen 164, 137–150 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Edge, W.L.: \({\rm PGL}(2,11)\) and \({\rm PSL}(2,11)\). J. Algebra 97(2), 492–504 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fuertes, Y., Jones, G.A.: Beauville surfaces and finite groups. J. Algebra 340, 13–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Funar, L.: Torus bundles not distinguished by TQFT invariants. Geom. Topol. 17(4), 2289–2344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. González-Diez, G., Harvey, W.J.: Moduli of Riemann surfaces with symmetry. In: Harvey, W.J., Maclachlan, C. (eds.) Discrete Groups and Geometry. London Mathematical Society Lecture Note Series, vol. 173, pp. 75–93. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  26. González-Diez, G., Jaikin-Zapirain, A.: The absolute Galois group acts faithfully on regular dessins and on Beauville surfaces. Proc. London Math. Soc. 111(4), 775–796 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. González-Diez, G., Torres-Teigell, D.: Non-homeomorphic Galois conjugate Beauville structures on \({\rm PSL}(2, p)\). Adv. Math. 229(6), 3096–3122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library, vol. 52. Wiley, New York (1994)

    Book  Google Scholar 

  29. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  30. Hempel, J.: Some 3-manifold groups with the same finite quotients (2014). arXiv:1409.3509

  31. Huppert, B.: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften, vol. 134. Springer, Berlin (1979)

    Google Scholar 

  32. Jones, G.A., Streit, M.: Galois groups, monodromy groups and cartographic groups. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions, vol. II. London Mathematical Society Lecture Note Series, vol. 243, pp. 25–65. Cambridge University Press, Cambridge (1997)

    Chapter  Google Scholar 

  33. Long, D.D., Reid, A.W.: Grothendieck’s problem for 3-manifold groups. Groups Geom. Dyn. 5(2), 479–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maclachlan, C.: A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc. s1–44(1), 265–272 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maclachlan, C., Harvey, W.J.: On mapping-class groups and Teichmüller spaces. Proc. London Math. Soc. s3–30(4), 496–512 (1975)

    Article  MATH  Google Scholar 

  36. Milne, J.S., Suh, J.: Nonhomeomorphic conjugates of connected Shimura varieties. Amer. J. Math. 132(3), 731–750 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier Grenoble 6, 1–42 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  38. Serre, J.-P.: Exemples de variétés projectives conjuguées non homéomorphes. C. R. Acad. Sci. Paris 258, 4194–4196 (1964)

    MathSciNet  MATH  Google Scholar 

  39. Serre, J.-P.: Topics in Galois Theory. Jones and Bartlett, Boston (1992)

    MATH  Google Scholar 

  40. Shimada, I.: Non-homeomorphic conjugate complex varieties. In: Brasselet, J.-P., et al. (eds.) Singularities–Niigata–Toyama 2007. Advanced Studies in Pure Mathematics, vol. 56, pp. 285–301. Mathematical Society of Japan, Tokyo (2009)

    Google Scholar 

  41. Singerman, D.: Subgroups of Fuschian groups and finite permutation groups. Bull. London Math. Soc. 2(3), 319–323 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. Singerman, D.: Finitely maximal Fuchsian groups. J. London Math. Soc. s2–6(1), 29–38 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  43. Streit, M.: Field of definition and Galois orbits for the Macbeath–Hurwitz curves. Arch. Math. (Basel) 74(5), 342–349 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Voisin, C.: Hodge Theory and Complex Algebraic Geometry, vol. I. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  45. Wolfart, J.: \(ABC\) for polynomials, dessins d’enfants and uniformization—a survey. In: Baier, S., Schwarz, W., Steuding, J. (eds.) Elementare und Analytische Zahlentheorie, pp. 313–345. Schriften der Wissenschaftlichen Gesellschaft an der Johann Wolfgang Goethe-Universität Frankfurt am Main, vol. 20. Franz Steiner, Stuttgart (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabino González-Diez.

Additional information

The second author is grateful to the Departamento de Matemáticas, Universidad Autónoma de Madrid, for financially supporting a visit during which much of this research was carried out. The first and third authors are partially supported by the Grant MTM2012-31973 of the MICINN. The first two authors thank the ICMS in Edinburgh, where they started collaborating on Beauville surfaces at a September 2008 workshop on the Grothendieck–Teichmüller Theory of Dessins d’Enfants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Diez, G., Jones, G.A. & Torres-Teigell, D. Arbitrarily large Galois orbits of non-homeomorphic surfaces. European Journal of Mathematics 4, 223–241 (2018). https://doi.org/10.1007/s40879-017-0203-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-017-0203-z

Keywords

Mathematics Subject Classification

Navigation