Log terminal singularities, platonic tuples and iteration of Cox rings

  • Ivan Arzhantsev
  • Lukas Braun
  • Jürgen Hausen
  • Milena Wrobel
Research Article

Abstract

Looking at the well understood case of log terminal surface singularities, one observes that each of them is the quotient of a factorial one by a finite solvable group. The derived series of this group reflects an iteration of Cox rings of surface singularities. We extend this picture to log terminal singularities in any dimension coming with a torus action of complexity one. In this setting, the previously finite groups become solvable torus extensions. As explicit examples, we investigate compound du Val threefold singularities. We give a complete classification and exhibit all the possible chains of iterated Cox rings.

Keywords

Log terminal singularities Cox rings Torus action of complexity one 

Mathematics Subject Classification

14L30 14M25 14B05 13A05 13F15 

Notes

Acknowledgements

We would like thank the referee for carefully reading the manuscript and for many helpful remarks.

References

  1. 1.
    Altmann, K., Petersen, L.: Cox rings of rational complexity-one \(T\)-varieties. J. Pure Appl. Algebra 216(5), 1146–1159 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Artin, M.: On isolated rational singularities of surfaces. Amer. J. Math. 88(1), 129–136 (1966)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings. Cambridge Studies in Advanced Mathematics, vol. 144. Cambridge University Press, Cambridge (2015)MATHGoogle Scholar
  4. 4.
    Arzhantsev, I.V., Gaifullin, S.A.: Cox rings, semigroups, and automorphisms of affine varieties. Sb. Math. 201(1–2), 1–21 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Barthel, G., Kaup, L.: Topologie des surfaces complexes compactes singuliéres. In: Sur la Topologie des Surfaces Complexes Compactes. Sémaire de Mathématiques Supérieures, vol. 80, pp. 61–297. Presses de l’Université de Montréal, Montreal (1982)Google Scholar
  6. 6.
    Bechtold, B., Hausen, J., Huggenberger, E., Nicolussi, M.: On terminal Fano 3-folds with 2-torus action. Int. Math. Res. Not. IMRN 2016(5), 1563–1602 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brieskorn, E.: Rationale Singularitäten komplexer Flächen. Invent. Math. 4(5), 336–358 (1967/1968)Google Scholar
  8. 8.
    Brown, M.: Singularities of Cox rings of Fano varieties. J. Math. Pures Appl. (9) 99(6), 655–667 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cox, D., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)Google Scholar
  10. 10.
    Dais, D.I.: Resolving 3-dimensional toric singularities. In: Bonavero, L., Brion, M. (eds.) Geometry of Toric Varieties. S’eminaires et Congrès, vol. 6, pp. 155–186. Société Mathématique de France, Paris (2002)Google Scholar
  11. 11.
    Dolgachev, I.V.: On the link space of a Gorenstein quasihomogeneous surface singularity. Math. Ann. 265(4), 529–540 (1983)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Donten-Bury, M.: Cox rings of minimal resolutions of surface quotient singularities. Glasg. Math. J. 58(2), 325–355 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    du Val, P.: On isolated singularities of surfaces which do not affect the conditions of adjunction. I-III. Math. Proc. Cambridge Philos. Soc. 30(453–465), 483–491 (1934)CrossRefMATHGoogle Scholar
  14. 14.
    Ebeling, W.: Poincaré series and monodromy of a two-dimensional quasihomogeneous hypersurface singularity. Manuscripta Math. 107(3), 271–282 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Facchini, L., González-Alonso, V., Lasoń, M.: Cox rings of Du Val singularities. Matematiche (Catania) 66(2), 115–136 (2011)MathSciNetMATHGoogle Scholar
  16. 16.
    Flenner, H., Zaidenberg, M.: Log-canonical forms and log canonical singularities. Math. Nachr. 254(255), 107–125 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, 2nd edn. Springer, Berlin (1998)Google Scholar
  18. 18.
    Gongyo, Y., Okawa, S., Sannai, A., Takagi, S.: Characterization of varieties of Fano type via singularities of Cox rings. J. Algebraic Geom. 24(1), 159–182 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hausen, J., Keicher, S.: A software package for Mori dream spaces. LMS J. Comput. Math. 18(1), 647–659 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hausen, J., Herppich, E.: Factorially graded rings of complexity one. In: Skorobogatov, A.N. (ed.) Torsors, Étale Homotopy and Applications to Rational Points. London Mathematical Society Lecture Note Series, vol. 405, pp. 414–428. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  21. 21.
    Hausen, J., Süß, H.: The Cox ring of an algebraic variety with torus action. Adv. Math. 225(2), 977–1012 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hausen, J., Wrobel, M.: Non-complete rational \(T\)-varieties of complexity one. Math. Nachr. 290(5–6), 815–826 (2017)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ishii, S.: Introduction to Singularities. Springer, Tokyo (2014)CrossRefMATHGoogle Scholar
  24. 24.
    Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. With the collaboration of C.H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)Google Scholar
  25. 25.
    Liendo, A., Süß, H.: Normal singularities with torus actions. Tohoku Math. J. 65(1), 105–130 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Markushevich, D.G.: Canonical singularities of three-dimensional hypersurfaces. Math. USSR-Izv. 26(2), 315–345 (1986)CrossRefMATHGoogle Scholar
  27. 27.
    Newman, M.: Integral Matrices. Pure and Applied Mathematics, vol. 45. Academic Press, New York (1972)Google Scholar
  28. 28.
    Orlik, P., Wagreich, P.: Algebraic surfaces with \(k^*\)-action. Acta Math. 138(1–2), 43–81 (1977)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Reid, M.: Canonical 3-folds. Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 273–310. Sijthoff & Noordhoff, Alphen aan den Rijn, Germantown (1980)Google Scholar
  30. 30.
    Reid, M.: Minimal models of canonical 3-folds. In: Algebraic Varieties and Analytic Varieties. Adv. Stud. Pure Math., vol. 1, pp. 131–180. North-Holland, Amsterdam (1983)Google Scholar
  31. 31.
    Stanley, R.: A census of convex lattice polygons with at most one interior lattice point. Ars Combin. 28, 83–96 (1989)MathSciNetMATHGoogle Scholar
  32. 32.
    Wemyss, M.: The \({\rm GL}(2,\mathbb{C})\) McKay correspondence. Math. Ann. 350(3), 631–659 (2011)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Wunram, J.: Reflexive modules on quotient surface singularities. Math. Ann. 279(4), 583–598 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ivan Arzhantsev
    • 1
  • Lukas Braun
    • 2
  • Jürgen Hausen
    • 2
  • Milena Wrobel
    • 2
  1. 1.Faculty of Computer ScienceNational Research University Higher School of EconomicsMoscowRussia
  2. 2.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations