Skip to main content

Pressure-Shear Plate Impact Investigation of Dynamic Shearing Resistance of Polycrystalline Pure Magnesium at Elevated Temperatures: Twinning and Dislocation-Slip Rates

Abstract

Polycrystalline magnesium (Mg) and its alloys have been widely investigated in order to better understand and improve their mechanical properties. However, significant questions remain as to how these materials behave under ultra–high strain-rate loading conditions, especially at elevated temperatures. In view of this, in the present study, elevated temperature combined pressure–and–shear plate impact experiments are employed to investigate the dynamic shearing resistance of polycrystalline commercially pure (99.9%) magnesium at strain-rates in excess of 105 s−1, temperatures up to 500 °C, and shear strains > 100%. The results of the study provide important insights into the shearing resistance of polycrystalline pure Mg under extreme thermomechanical loading conditions and its relationship to the evolution of various inelastic deformation modes – dislocation-mediated slip, deformation twinning, and geometric strain softening – with different mechanisms becoming dominant at different levels of inelastic strains and test temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaiser F, Letzig D, Bohlen J, Styczynski A, Hartig C, Kainer KU (2003) Anisotropic properties of magnesium sheet AZ31. Materials science forum: magnesium alloys 2003, editors. Y. Kojima, T. Aizawa, K. Higashi, S. Kamados. Trans Tech Publ. pp. 315–320.

  2. Tucker MT, Horstemeyer MF, Gullett PM, El Kadiri H, Whittington WR (2009) Anisotropic effects on the strain rate dependence of a wrought magnesium alloy. Scripta Mater 60(3):182–185

    Article  CAS  Google Scholar 

  3. Chapuis A, Driver JH (2011) Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater 59(5):1986–1994

    Article  CAS  Google Scholar 

  4. Jain A, Agnew SR (2007) Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Mater Sci Eng, A 462(1):29–36

    Article  Google Scholar 

  5. Dudamell NV, Ulacia I, Galvez F, Yi S, Bohlen J, Letzig D, Hurtado I, Perez-Prado MT (2011) Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature. Acta Mater 59(18):6949–6962

    Article  CAS  Google Scholar 

  6. Klimanek P, Pötzsch A (2002) Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater Sci Eng, A 324(1):145–150

    Article  Google Scholar 

  7. Choi HJ, Kim Y, Shin JH, Bae DH (2010) Deformation behavior of magnesium in the grain size spectrum from nano-to micrometer. Mater Sci Eng, A 527(6):1565–1570

    Article  Google Scholar 

  8. Somekawa H, Mukai T (2005) Effect of grain refinement on fracture toughness in extruded pure magnesium. Scripta Mater 53(9):1059–1064

    Article  CAS  Google Scholar 

  9. Jeong J, Alfreider M, Konetschnik R, Kiener D, Oh SH (2018) In-situ TEM observation of 101¯ 2 twin-dominated deformation of Mg pillars: twinning mechanism, size effects and rate dependency. Acta Mater 158:407–421

    Article  CAS  Google Scholar 

  10. Barnett MR (2007) Twinning and the ductility of magnesium alloys Part II. “Contraction” twins. Mater Sci Eng, A 464:8–16

    Article  Google Scholar 

  11. Barnett MR (2007) Twinning and the ductility of magnesium alloys Part I: “Tension” twins. Mater Sci Eng, A 464:1–7

    Article  Google Scholar 

  12. Beyerlein IJ, McCabe RJ, Tomé CN (2011) Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling study. J Mech Phys Solids 59(5):988–1003

    Article  CAS  Google Scholar 

  13. Beyerlein IJ, McCabe R, Tome C (2011) Stochastic processes of 10–12 deformation twinning in hexagonal close-packed polycrystalline zirconium and magnesium. Int J Multiscale Comput Eng 9(4):459–480

    Article  CAS  Google Scholar 

  14. Zhang J, Joshi SP (2012) Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J Mech Phy Solids 60(5):945–972

    Article  CAS  Google Scholar 

  15. Knezevic M, Levinson A, Harris R, Mishra RK, Doherty RD, Kalidindi SR (2010) Deformation twinning in AZ31: Influence on strain hardening and texture evolution. Acta Mater 58(19):6230–6242

    Article  CAS  Google Scholar 

  16. Kumar A, Hauser F, Dorn J (1968) Viscous drag on dislocations in aluminum at high strain rates. Acta Metall 16(9):1189–1197

    Article  CAS  Google Scholar 

  17. Regazzoni G, Kocks UF, Follansbee PS (1987) Dislocation kinetics at high strain rates. Acta Metall 35(12):2865–2875

    Article  CAS  Google Scholar 

  18. Zuanetti B, Wang T, Prakash V (2017) A novel approach for plate impact experiments to determine the dynamic behavior of materials under extreme conditions. J Dynamic Behav Mater 3:64–75

    Article  Google Scholar 

  19. Wang T, Zuanetti B, Prakash V (2017) Shock response of commercial purity polycrystalline magnesium under uniaxial strain at elevated temperatures. J Dynamic Behav Mater 3(4):497–509

    Article  Google Scholar 

  20. Clifton RJ, Klopp RW (1985) Pressure Shear Plate Impact Testing. Mechanical Testing, Metals Handbook, Ninth Edition (8 ed.), ASM, Metals Park, pp.230–239

  21. Sunny G, Yuan F, Prakash V, Lewandowski JJ (2008) Effect of high strain rates on peak stress in a Zr-based bulk metallic glass. J Appl Phys 104:093522

    Article  Google Scholar 

  22. Yuan FP, Prakash V, Lewandowski JJ (2009) Spall strength of a zirconium-based bulk metallic glass under shock-induced compression-and-shear loading. Mech Mater 41(7):886–897

    Article  Google Scholar 

  23. Tsai L, Prakash V (2005) Structure of weak shock waves in 2-D layered material systems. Int J Solids Struct 42(2):727–750

    Article  Google Scholar 

  24. Zuanetti B, Luscher DJ, Ramos K, Bolme CA, Prakash V (2021) Dynamic flow stress of pure polycrystalline aluminum: pressure-shear plate impact experiments and extension of dislocation-based modeling to large strains. J Mech Phys Solids 146(104185):1–30

    Google Scholar 

  25. Liou NS, Okada M, Prakash V (2004) Formation of molten metal films during metal-on-metal slip under extreme interfacial conditions. J Mech Phys Solids 52(9):2025–2056

    Article  CAS  Google Scholar 

  26. Prakash V, Mehta N (2012) Uniaxial compression and combined compression-and-shear response of amorphous polycarbonate at high loading rates. Polym Eng Sci 52(6):1217–1231

    Article  CAS  Google Scholar 

  27. Yuan F, Prakash V, Lewandowski JJ (2010) Shear yield and flow behavior of a Zirconium-based bulk metallic glass. Mech Mater 42(3):248–255

    Article  Google Scholar 

  28. Okada M, Liou NS, Prakash V (2002) Dynamic shearing resistance of molten metal films at high pressures. Exp Mech 42(2):161–171

    Article  Google Scholar 

  29. Zuanetti B, Wang T, Prakash V (2017) A compact fiber-optics based heterodyne combined normal and transverse displacement interferometer. Rev Sci Inst 88:033108

    Article  Google Scholar 

  30. Prakash V, Clifton RJ (1992) Experimental and Analytical Investigations of Dynamic Fracture under Conditions of Plane-Strain. Fracture Mechanics: Twenty Second Symposium (vol. 1) ASTM STP 1131 ed.), American Society of Testing Materials, Philadelphia, PA, pp.412–444

  31. Zuanetti B, Wang T, Prakash V (2019) Plate impact investigation of the dynamic response of commercial tungsten carbide under shock-induced compression and combined compression-and-shear loading. Int J Impact Eng 131:200–208

    Article  Google Scholar 

  32. Wang T, Prakash V (2021) Inelastic deformation mechanisms in shock compressed polycrystalline pure magnesium at temperatures approaching melt. J Dynamic Behav Mater 7:279–293

    Article  Google Scholar 

  33. Chang Y (2016) A continnum model for slip-twinning interactions in magnesium and magnesium alloys, Doctor of Philosophy, California Institute of Technology, Pasadena, CA.

  34. Levinson AJ (2012) The role of deformation twinning on strain hardening and recrystallization in magnesium alloy AZ31, PhD Dissertation, Drexel University,

  35. Renganathan P, Winey JM, Gupta YM (2017) Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response. J. Appl Phys 121:035901

    Article  Google Scholar 

  36. Kannan V, Hazeli K, Ramesh KT (2018) The mechanics of dynamic twinning in single crystal magnesium. J Mech Phys Solids 120:154–178

    Article  CAS  Google Scholar 

  37. Johnson JN, Rohde RW (1971) Dynamic deformation twinning in shock-loaded iron. J Appl Phys 42(11):4171–4182

    Article  CAS  Google Scholar 

  38. Liu Q, Roy A, Silberschmidt VV (2017) Temperature-dependent crystal-plasticity model for magnesium: a bottom-up approach. Mech Mater 113:44–56

    Article  Google Scholar 

  39. Luscher DJ, Buechler MA, Walters DJ, Bolme CA, Ramo KJ (2018) On computing the evolution of temperature for materials under dynamic loading. Int J Plast 111:188–210

    Article  Google Scholar 

  40. Hidnert P, Sweeney WT (1928) Thermal expansion of magnesium and some of its alloys. Bur Stan J Res 1:771–792

    Article  CAS  Google Scholar 

  41. Poppema TJ, Jaeger FM (1935) The exact measurement of the specific heats of solid substances at higher temperatures. XIX. The specific heats of zinc, magnesium and their binary afloy: MgZn2. Proceedings Royal Acad. XXXVIII 510–520.

  42. Errandonea D (2010) The melting curve of ten metals up to 12 GPa and 1600 K. J Appl Phys 108(3):033517

    Article  Google Scholar 

  43. Zhao M, Kannan V, Ramesh KT (2018) The dynamic plasticity and dynamic failure of a magnesium alloy under multiaxial loading. Acta Mater 154:124–136

    Article  CAS  Google Scholar 

  44. Ravindran S, Lovinger Z, Gandhi V, Mello M, Ravichandran G (2020) Strength of magnesium at high pressures and strain rates. Extreme Mech Lett 41:1044

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the U.S. Department of Energy through the Stewardship Science Academic Alliance (DE-NA0001989 and DE-NA0002919) in conducting the present research. These experiments were conducted at Case Western Reserve University and since then the PI, Vikas Prakash, has moved to the Institute for Shock Physics at the Washington State University. The authors would also express gratitude to the Swagelok Center for Surface Analysis of Materials (SCSAM) at CWRU for the EBSD data and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Prakash, V. Pressure-Shear Plate Impact Investigation of Dynamic Shearing Resistance of Polycrystalline Pure Magnesium at Elevated Temperatures: Twinning and Dislocation-Slip Rates. J. dynamic behavior mater. 7, 610–623 (2021). https://doi.org/10.1007/s40870-021-00312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-021-00312-9