Skip to main content

Contributions to Dynamic Behaviour of Materials Professor John Edwin Field, FRS 1936–2020

Abstract

Professor John Edwin Field passed away on October 21st, 2020 at the age of 84. Professor Field was widely regarded as a leader in high-strain rate physics and explosives. During his career in the Physics and Chemistry of Solids (PCS) Group of the Cavendish Laboratory at Cambridge University, John made major contributions into our understanding of friction and erosion, brittle fracture, explosives, impact and high strain-rate effects in solids, impact in liquids, and shock physics. The contributions made by the PCS group are recognized globally and the impact of John’s work is a lasting addition to our knowledge of the dynamic effects in materials. John graduated 84 Ph.D. students and collaborated broadly in the field. Many who knew him attribute their success to the excellent grounding in research and teaching they received from John Field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Field JE (1962) High speed liquid impact and the deformation and fracture of brittle solids. University of Cambridge, Cambridge

    Google Scholar 

  2. Hutchings IM (1974) The erosion of ductile metals. University of Cambridge, Cambridge

    Google Scholar 

  3. Winter RE (1971) Microdeformation of materials by impact and slow loading. University of Cambridge, Cambridge

    Google Scholar 

  4. Fuller K (1973) The brittle fracture of polymers. University of Cambridge, Cambridge

    Google Scholar 

  5. Graduate Student Edition (2020) CavMag: News from the Cavendish Laboratory. University of Cambridge, Cambridge

    Google Scholar 

  6. Bowden FP, Brunton JH (1958) Damage to solids by liquid impact at supersonic speeds. Nature 181(4613):873–875. https://doi.org/10.1038/181873a0

    Article  Google Scholar 

  7. Field JE (1966) Stress waves, deformation and fracture caused by liquid impact. Philos Trans R Soc Lond Ser A 260(1110):86–93

    CAS  Article  Google Scholar 

  8. Field JE, Heyes AD (1967) The fracture of materials of high elastic moduli. In: Helwich O (ed) Proceedings of the seventh international congress on high-speed photography, Zurich, Switzerland. Verlag, pp 391–398

  9. Tabor D (1969) Frank Philip Bowden, 1903–1968. Biograph Memoirs Fellows R Soc 15:1–38. https://doi.org/10.1098/rsbm.1969.0001

    CAS  Article  Google Scholar 

  10. Hutchings IM, Winter RE, Field JE (1976) Solid particle erosion of metals: the removal of surface material by spherical projectiles. Proc R Soc Lond A 348(1654):379–392

    Article  Google Scholar 

  11. Hutchings IM (1977) Deformation of metal surfaces by the oblique impact of square plates. Int J Mech Sci 19(1):45–52. https://doi.org/10.1016/0020-7403(77)90015-7

    Article  Google Scholar 

  12. Hutchings IM, Winter RE (1975) A simple small-bore laboratory gas gun. J Phys E 8:84–86

    Article  Google Scholar 

  13. Hutchings I (1977) The erosion of metals by solid particles—a study using high-speed photography, vol 0097. 12th International Congress on High Speed Photography. SPIE,

  14. Walley SM, Field JE (2005) The contribution of the Cavendish Laboratory to the understanding of solid particle erosion mechanisms. Wear 258(1–4):552–566. https://doi.org/10.1016/j.wear.2004.09.013

    CAS  Article  Google Scholar 

  15. Hutchings I, Little J (1995) Editorial. Wear 186–187:v. https://doi.org/10.1016/0043-1648(95)80043-3

    Article  Google Scholar 

  16. Field JE (1999) ELSI conference: invited lecture: liquid impact: theory, experiment, applications. Wear 233–235:1–12. https://doi.org/10.1016/S0043-1648(99)00189-1

    Article  Google Scholar 

  17. Crowther JG (1974) The Cavendish Laboratory, 1874–1974. Science History Publications, Sagamore Beach, MA

    Book  Google Scholar 

  18. Field J (2008) David Tabor. 23 October 1913 — 26 November 2005. Biographical Memoirs of Fellows of the Royal Society 54:425–459. https://doi.org/10.1098/rsbm.2007.0031

  19. Hagan JT (1973) Some aspects of brittle fracture and laser damage in dielectrics. University of Cambridge, Cambridge

    Google Scholar 

  20. Hagan JT, Swain MV, Field JE (1978) Stress corrosion characteristics of toughened glasses and ceramics. J Mater Sci 13(1):189–194. https://doi.org/10.1007/BF00739290

    CAS  Article  Google Scholar 

  21. Hagan JT, Swain MV, Field JE (1979) Fracture-strength studies on annealed and tempered glasses under dynamic conditions. Philos Mag A 39(6):743–756. https://doi.org/10.1080/01418617908239304

    CAS  Article  Google Scholar 

  22. Swain MV, Hagan JT (1976) Indentation plasticity and the ensuing fracture of glass. J Phys D 9(15):2201–2214. https://doi.org/10.1088/0022-3727/9/15/011

    CAS  Article  Google Scholar 

  23. Knight CG, Swain MV, Chaudhri MM (1977) Impact of small steel spheres on glass surfaces. J Mater Sci 12(8):1573–1586. https://doi.org/10.1007/BF00542808

    Article  Google Scholar 

  24. Swain MV, Hagan JT (1980) Rayleigh wave interaction with, and the extension of, microcracks. J Mater Sci 15(2):387–404. https://doi.org/10.1007/PL00020072

    Article  Google Scholar 

  25. Hauser H (1977) Mechanically activated chemical reactions. University of Cambridge, Cambridge

    Google Scholar 

  26. Gorham D (1974) High velocity liquid jets and their impact on composite materials. University of Cambridge, Cambridge

    Google Scholar 

  27. Ng WL, Field JE, Hauser HM (1976) Study of the thermal decomposition of Pentaerythritol Tetranitrate. J Chem Soc Perkin Trans 2:637–639

    Article  Google Scholar 

  28. Hauser HM, Field JE (1978) New method for TG and DSC data analysis. Thermochim Acta 27(1):1–8. https://doi.org/10.1016/0040-6031(78)85016-3

    CAS  Article  Google Scholar 

  29. Hauser HM, Field JE, Mohan VK (1983) Fracture-induced decomposition of a brittle high explosive: pentaerythritol tetranitrate. Chem Phys Lett 99(1):66–70. https://doi.org/10.1016/0009-2614(83)80271-1

    CAS  Article  Google Scholar 

  30. Ng WL, Field JE, Hauser HM (1986) Thermal, fracture, and laser-induced decomposition of pentaerythritol tetranitrate. J Appl Phys 59(12):3945–3952. https://doi.org/10.1063/1.336743

    CAS  Article  Google Scholar 

  31. Field JE, Hauser HM, Hutchings IM, Woodward AC (1974) Strength testing of diamond. Ind Diamond Rev 34:255–259

    Google Scholar 

  32. Matthewson MJ (1978) Protective coatings and mechanical properties of materials. University of Cambridge, Cambridge

    Google Scholar 

  33. van der Zwaag S, Field JE (1982) The effect of thin hard coatings on the Hertzian stress field. Philos Mag A 46(1):133–150. https://doi.org/10.1080/01418618208236213

    Article  Google Scholar 

  34. van der Zwaag S, Field JE (1983) Indentation and liquid impact studies on coated germanium. Philos Mag A 48(5):767–777. https://doi.org/10.1080/01418618308236543

    Article  Google Scholar 

  35. Field JE (1985) Cleaving optical fibres using diamond wedges. In: Advances in ultrahard materials application technology, Vol 3. DeBeers Industrial Diamond Division, pp 1–10

  36. van der Zwaag S, Dear JP, Field JE (1986) The effect of double layer coatings of high modulus on contact stresses. Philos Mag A 53(1):101–111. https://doi.org/10.1080/01418618608242810

    Article  Google Scholar 

  37. Field JE, Samuels B, Townsend D, Hagan JT (1988) Cleavage of optical fibres following diamond-wedge indentation. Philos Mag A 57(2):151–171. https://doi.org/10.1080/01418618808204506

    CAS  Article  Google Scholar 

  38. Seward C, Field J, Coad E (1994) Liquid impact erosion of bulk diamond, diamond composites and diamond coatings. J Hard Mater 5:49–62

    CAS  Google Scholar 

  39. Coad EJ, Pickles CSJ, Jilbert GH, Field JE (1996) Aerospace erosion of diamond and diamond coatings. Diam Relat Mater 5(6):640–643. https://doi.org/10.1016/0925-9635(95)00403-3

    CAS  Article  Google Scholar 

  40. Jilbert GH, Field JE (1998) Optimum coating thickness for the protection of zinc sulphide and germanium substrates from solid particle erosion. Wear 217(1):15–23. https://doi.org/10.1016/S0043-1648(98)00171-9

    CAS  Article  Google Scholar 

  41. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics, second editon. Wiley, Hoboken

    Book  Google Scholar 

  42. Till minne av professor John Field (2020) https://www.ltu.se/org/tvm/Till-minne-av-professor-John-Field-1.203423. Accessed 25 Jan 2021

  43. Andrews DR (1976) Erosion of metals. University of Cambridge, Cambridge

    Google Scholar 

  44. van der Zwaag S (1981) Strength and impact properties of IR transparent materials. University of Cambridge, Cambridge

    Google Scholar 

  45. van der Zwaag S, Field JE (1982) Liquid jet impact damage on zinc sulphide. J Mater Sci 17(9):2625–2636. https://doi.org/10.1007/BF00543897

    Article  Google Scholar 

  46. van der Zwaag S, Field JE (1983) Rain erosion damage in brittle materials. Eng Fract Mech 17(4):367–379. https://doi.org/10.1016/0013-7944(83)90087-5

    Article  Google Scholar 

  47. Walley SM (1982) Erosion of polyethylene by solid particle impacts. University of Cambridge, Cambridge

    Google Scholar 

  48. Bowden FP, Field JE (1964) The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc R Soc A 282:331–352

    Google Scholar 

  49. Chaudhri MM, Walley SM (1978) Damage to glass surfaces by the impact of small glass and steel spheres. Philos Mag A 37:153–165

    Article  Google Scholar 

  50. Chaudhri MM, Stephens A (1979) Damage and dynamic hardness of ionic crystals by microparticle impact. Proc SPIE 189:726–729

    CAS  Article  Google Scholar 

  51. Chaudhri MM, Brophy PA (1980) Single particle impact damage of fused silica. J Mater Sci 15(2):345–352. https://doi.org/10.1007/Bf02396782

    CAS  Article  Google Scholar 

  52. Hutchings IM, Rochester MC, Camus JJ (1977) A rectangular-bore gas gun. J Phys E: Sci Instrum 10:455–457

    CAS  Article  Google Scholar 

  53. Andrews DR, Horsfield N (1983) Particle collisions in the vicinity of an eroding surface. J Phys D 16(4):525–538. https://doi.org/10.1088/0022-3727/16/4/014

    CAS  Article  Google Scholar 

  54. Walley SM, Field JE (1987) The erosion and deformation of polyethylene by solid-particle impact. Philos Trans R Soc A 321(1558):277–303. https://doi.org/10.1098/rsta.1987.0016

    CAS  Article  Google Scholar 

  55. Hartman WF, Stirbis PP (1973) Rotating band pressures and engraving forces in 155 mm artillery shells. J Eng Mater Technol 95(2):124–129. https://doi.org/10.1115/1.3443132

    Article  Google Scholar 

  56. Andrews TD (2006) Projectile driving band interactions with gun barrels. J Pressure Vessel Technol 128(2):273–278. https://doi.org/10.1115/1.2172965

    Article  Google Scholar 

  57. Woodley C (2011) Modelling the internal ballistics of lightweight plastic driving band projectiles. In: Baker E, Templeton D (eds) Proc. 26th Int. Symp. on Ballistics. Destech Publications, Lancaster, PA, pp 613–624

  58. Pope P (1984) Dynamic compression of metals and explosives. University of Cambridge, Cambridge

    Google Scholar 

  59. Safford N (1988) High strain rate studies with the direct impact Hopkinson bar. University of Cambridge, Cambridge

    Google Scholar 

  60. Gorham DA (1980) Measurement of stress-strain properties of strong metals at very high rates of strain. In: Institute of Physics Conference Series, London, 1979. pp 47:16–24

  61. Walley SM, Field JE, Pope PH, Safford NA (1989) A study of the rapid deformation behaviour of a range of polymers. Philos Trans R Soc A 328:1–33. https://doi.org/10.1098/rsta.1989.0020

    CAS  Article  Google Scholar 

  62. Walley SM, Field JE, Pope PH, Safford NA (1991) The rapid deformation-behavior of various polymers. J Phys III 1(12):1889–1925

    CAS  Google Scholar 

  63. Swallowe G (1979) Effect of grit on the impact initiation of explosives. University of Cambridge, Cambridge

    Google Scholar 

  64. Walley SM, Field JE (1994) Strain rate sensitivity of polymers in compression from low to high strain rates. DYMAT J 1:211–228

    Google Scholar 

  65. Coleman KR (1959) The photography of high temperature events. In: Schardin H, Helwich O (eds) Proc. Fourth Int. Kongress Kurzzeitphotographie. Verlag Dr, Othmar Helwich, Darmstadt, Germany, pp 32–39

    Google Scholar 

  66. Celebrating Churchill’s scientists with Sir Winston’s great-grandson (2015) Science Museum. https://blog.sciencemuseum.org.uk/celebrating-churchills-scientists-with-sir-winstons-great-grandson/. Accessed 25 Jan 2021

  67. Walley SM, Field JE, Biers RA, Proud WG, Williamson DM, Jardine AP (2015) The use of glass anvils in drop-weight studies of energetic materials. Propellants Explos Pyrotech 40(3):351–365. https://doi.org/10.1002/prep.201500043

    CAS  Article  Google Scholar 

  68. Walley SM, Field JE, Palmer SJP (1992) Impact sensitivity of propellants. Proc R Soc Lond Ser A 438(1904):571–583. https://doi.org/10.1098/rspa.1992.0126

    CAS  Article  Google Scholar 

  69. Balzer JE, Siviour CR, Walley SM, Proud WG, Field JE (2004) Behaviour of ammonium perchlorate–based propellants and a polymer–bonded explosive under impact loading. Proc R Soc Lond Ser A 460(2043):781–806. https://doi.org/10.1098/rspa.2003.1188

    CAS  Article  Google Scholar 

  70. Walley SM, Balzer JE, Proud WG, Field JE (2000) Response of thermites to dynamic high pressure and shear. Proc R Soc Lond Ser A 456(1998):1483–1503. https://doi.org/10.1098/rspa.2000.0572

    Article  Google Scholar 

  71. Balzer J (2003) High-speed photographic study of the drop-weight impact response of RDX/DOS mixtures. Combust Flame 135(4):547–555. https://doi.org/10.1016/j.combustflame.2003.08.009

    CAS  Article  Google Scholar 

  72. Walley SM, Church PD, Townsley R, Field JE (2000) Validation of a path-dependent constitutive model for FCC and BCC metals using “symmetric” Taylor impact. J Phys IV 10(P9):69–74. https://doi.org/10.1051/jp4:2000912

    Article  Google Scholar 

  73. Chapman DJ, Radford DD, Walley SM (2005) A history of the Taylor test and its present use in the study of lightweight materials. In: Teixeira-Dias F, Dodd B, Lach E, Schultz P (eds) Design and use of light-weight materials. University of Aveiro, Aveiro, pp 12–24

    Google Scholar 

  74. Walley SM, Taylor NE, Williamson DM, Jardine AP A novel technique for performing symmetric Taylor impact. In: DYMAT 2015 - 11th international conference on the mechanical and physical behaviour of materials under dynamic loading, 2015. EPJ Web of Conferences, p 01029. https://doi.org/10.1051/epjconf/20159401029

  75. Walley SM, Proud WG, Rae PJ, Field JE (2000) Comparison of two methods of measuring the rapid temperature rises in split Hopkinson bar specimens. Rev Sci Instrum 71(4):1766–1771. https://doi.org/10.1063/1.1150534

    CAS  Article  Google Scholar 

  76. Field JE, Walley SM, Bourne NK, Huntley JM (1994) Experimental methods at high-rates of strain. J Phys IV 4(C8):3–22. https://doi.org/10.1051/jp4:1994801

    Article  Google Scholar 

  77. Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725–775. https://doi.org/10.1016/j.ijimpeng.2004.03.005

    Article  Google Scholar 

  78. Walley SM, Field JE (2001) Elastic wave propagation in materials. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology. Elsevier, Amsterdam, pp 2435–2439

    Google Scholar 

  79. Walley SM, Field JE (2016) Elastic Wave Propagation in Materials. In: Reference Module in Materials Science and Materials Engineering. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-803581-8.02945-3

  80. Walley SM, Field JE, Greenaway MW (2006) Crystal sensitivities of energetic materials. Mater Sci Technol 22(4):402–413. https://doi.org/10.1179/174328406x91122

    CAS  Article  Google Scholar 

  81. Walley SM (2007) Shear localization: a historical overview. Metall Mater Trans A 38(11):2629–2654. https://doi.org/10.1007/s11661-007-9271-x

    CAS  Article  Google Scholar 

  82. Walley SM (2012) Strain localization in energetic and inert granular materials. In: Dodd B, Bai YL (eds) Adiabatic shear localization: frontiers and advances. Elsevier, Amsterdam, pp 267–310

    Chapter  Google Scholar 

  83. Walley SM (2012) Historical origins of indentation hardness testing. Mater Sci Technol 28(9–10):1028–1044. https://doi.org/10.1179/1743284711y.0000000127

    CAS  Article  Google Scholar 

  84. Walley SM (2010) Historical review of high strain rate and shock properties of ceramics relevant to their application in armour. Adv Appl Ceram 109(8):446–466. https://doi.org/10.1179/174367609x422180

    CAS  Article  Google Scholar 

  85. Walley SM (2014) An Introduction to the properties of silica glass in ballistic applications. Strain 50(6):470–500. https://doi.org/10.1111/str.12075

    CAS  Article  Google Scholar 

  86. Dodd B, Walley SM, Yang R, Nesterenko VF (2015) Major steps in the discovery of adiabatic shear bands. Metall Mater Trans A 46(10):4454–4458. https://doi.org/10.1007/s11661-015-2739-1

    CAS  Article  Google Scholar 

  87. Siviour CR, Walley SM (2018) Inertial and frictional effects in dynamic compression testing. In: Othman R (ed) The Kolsky-Hopkinson Bar Machine. Springer, Berlin, pp 205–247

    Chapter  Google Scholar 

  88. Walley SM (2018) Aristotle, projectiles and guns.http://arxiv.org/abs/1804.00716

  89. Walley SM (2018) The origins of the Hopkinson bar technique. In: Othman R (ed) The Kolsky-Hopkinson bar machine. Springer, Berlin, pp 1–25

    Google Scholar 

  90. Walley SM (2018) The beginnings of the use of iron and steel in heavy armour. In: Kaufman B, Briant CL (eds) Metallurgical design and industry. Springer, New York, pp 71–153

    Chapter  Google Scholar 

  91. Walley SM (2020) Highways and byways in the history of high rate mechanical testing. J Dyn Behav Mater 6(2):113–158. https://doi.org/10.1007/s40870-020-00237-9

    Article  Google Scholar 

  92. Walley SM (2020) The effect of temperature gradients on elastic wave propagation in split Hopkinson pressure bars. J Dyn Behav Mater 6(3):278–286. https://doi.org/10.1007/s40870-020-00245-9

    Article  Google Scholar 

  93. Freeman CJ (1984) Strength and fracture properties of diamond. University of Cambridge, Cambridge

    Google Scholar 

  94. Field JE (1979) The Properties of diamond. Academic Press, London

    Google Scholar 

  95. Field JE (1992) The properties of natural and synthetic diamond. Academic Press, London

    Google Scholar 

  96. Field JE, Freeman CJ (1981) Strength and fracture properties of diamond. Philos Mag A 43(3):595–618. https://doi.org/10.1080/01418618108240397

    CAS  Article  Google Scholar 

  97. Freeman CJ, Field JE (1989) Friction of diamond, syndite and amborite sliding on various alloys. J Mater Sci 24(3):1069–1072. https://doi.org/10.1007/BF01148800

    CAS  Article  Google Scholar 

  98. Dear JP (1984) The fluid mechanics of high-speed liquid/solid impact. University of Cambridge, Cambridge, UK, Ph.D.

    Google Scholar 

  99. Field JE, Lesser MB, Dear JP, Tabor D (1985) Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems. Proc R Soc Lond A 401(1821):225–249. https://doi.org/10.1098/rspa.1985.0096

    CAS  Article  Google Scholar 

  100. Dear JP, Field JE (1988) High-speed photography of surface geometry effects in liquid/solid impact. J Appl Phys 63(4):1015–1021. https://doi.org/10.1063/1.340000

    Article  Google Scholar 

  101. Field JE, Dear JP, Ogren JE (1989) The effects of target compliance on liquid drop impact. J Appl Phys 65(2):533–540. https://doi.org/10.1063/1.343136

    CAS  Article  Google Scholar 

  102. Dear JP, Field JE (1988) A study of the collapse of arrays of cavities. J Fluid Mech 190:409–425. https://doi.org/10.1017/S0022112088001387

    CAS  Article  Google Scholar 

  103. Dear JP, Field JE, Walton AJ (1988) Gas compression and jet formation in cavities collapsed by a shock wave. Nature 332(6164):505–508. https://doi.org/10.1038/332505a0

    Article  Google Scholar 

  104. Gorham DA, Field JE (1976) The failure of composite materials under high-velocity liquid impact. J Phys D 9(10):1529–1541. https://doi.org/10.1088/0022-3727/9/10/018

    CAS  Article  Google Scholar 

  105. Gorham DA, Matthewson MJ, Field JE (1979) Damage mechanisms in polymers and composites under high-velocity liquid impact. In: Adler WF (ed) ASTM International. West Conshohocken, PA, pp 320–342

    Google Scholar 

  106. Walley SM, Field JE, Blair PW, Milford AJ (2004) The effect of temperature on the impact behaviour of glass/polycarbonate laminates. Int J Impact Eng 30(1):31–53. https://doi.org/10.1016/S0734-743X(03)00046-0

    Article  Google Scholar 

  107. Townsend D (1985) Liquid impact properties of brittle materials. University of Cambridge, Cambridge

    Google Scholar 

  108. Gorham DA, Pope PH, Field JE (1992) An improved method for compressive stress-strain measurements at very high strain rates. Proc R Soc Lond A 438(1902):153–170. https://doi.org/10.1098/rspa.1992.0099

    Article  Google Scholar 

  109. Siviour CR, Walley SM, Proud WG, Field JE (2005) Mechanical properties of SnPb and lead-free solders at high rates of strain. J Phys D 38(22):4131–4139. https://doi.org/10.1088/0022-3727/38/22/018

    CAS  Article  Google Scholar 

  110. Dixon D, Townsend D (1989) Hypervelocity impact research in British Aerospace. Inst Phys Conf Ser 102:553–556

    Google Scholar 

  111. Huntley JM (1987) Laser speckle and its application to strength measurement and crack propagation. University of Cambridge, Cambridge

    Google Scholar 

  112. Dalton S (1985) Split second: the world of high speed photography. Salem House Publishers, Topsfield

    Google Scholar 

  113. Palmer SJP, Field JE, Huntley JM (1993) Deformation, strengths and strains to failure of polymer bonded explosives. Proc R Soc A 440(1909):399–419

    CAS  Google Scholar 

  114. Huntley J, Field J (1994) High-speed laser speckle photography. Part 2: rotating mirror camera control system and applications. Optical Engineering 33 (5)

  115. Huntley JM, Field JE (1986) Measurement of time-varying displacement fields by multiple-exposure speckle photography. Appl Opt 25(10):1665–1669. https://doi.org/10.1364/AO.25.001665

    CAS  Article  Google Scholar 

  116. Huntley JM, Field JE (1988) Measurement of crack tip displacement field using laser speckle photography. Eng Fract Mech 30(6):779–790. https://doi.org/10.1016/0013-7944(88)90139-7

    Article  Google Scholar 

  117. Huntley J, Field J (1989) High resolution moire photography: application to dynamic stress analysis. Opt Eng 28(8):288926

    Article  Google Scholar 

  118. Leighton TG (1988) Response of gas-filled cavities to acoustic field. University of Cambridge, Cambridge

    Google Scholar 

  119. Leighton TG, Walton AJ, Field JE (1989) High-speed photography of transient excitation. Ultrasonics 27(6):370–373. https://doi.org/10.1016/0041-624X(89)90036-X

    Article  Google Scholar 

  120. Leighton TG, Lingard RJ, Walton AJ, Field JE (1991) Acoustic bubble sizing by combination of subharmonic emissions with imaging frequency. Ultrasonics 29(4):319–323. https://doi.org/10.1016/0041-624X(91)90029-8

    Article  Google Scholar 

  121. Leighton TG, Fagan KJ, Field JE (1991) Acoustic and photographic studies of injected bubbles. Eur J Phys 12(2):77–85. https://doi.org/10.1088/0143-0807/12/2/006

    Article  Google Scholar 

  122. Leighton TG, Farhat M, Field JE, Avellan F (2003) Cavitation luminescence from flow over a hydrofoil in a cavitation tunnel. J Fluid Mech 480:43–60. https://doi.org/10.1017/S0022112003003732

    CAS  Article  Google Scholar 

  123. Bourne N (1990) Shock wave interactions with cavities. University of Cambridge, Cambridge

    Google Scholar 

  124. Field JE, Bourne NK, Palmer SJP, Walley SM, Smallwood JM (1992) Hot-spot ignition mechanisms for explosives and propellants. Philos Trans R Soc Lond Ser A 339(1654):269–283. https://doi.org/10.1098/rsta.1992.0034

    CAS  Article  Google Scholar 

  125. Bourne NK, Milne AM (2004) Shock to detonation transition in a plastic bonded explosive. J Appl Phys 95(5):2379–2385. https://doi.org/10.1063/1.1644632

    CAS  Article  Google Scholar 

  126. Kanel GI, Rasorenov SV, Fortov VE (1992) The failure waves and spallations in homogeneous brittle materials. In: Schmidt SC, Dick RD, Forbes JW, Tasker DG (eds) Shock compression of condensed matter–1991. Elsevier, Amsterdam, pp 451–454

    Chapter  Google Scholar 

  127. Bless SJ, Brar NS, Kanel G, Rosenberg Z (1992) Failure waves in glass. J Am Ceram Soc 75(4):1002–1004. https://doi.org/10.1111/j.1151-2916.1992.tb04174.x

    CAS  Article  Google Scholar 

  128. Bourne NK, Rosenberg Z, Field JE (1995) High-speed photography of compressive failure waves in glasses. J Appl Phys 78(6):3736–3739. https://doi.org/10.1063/1.360709

    CAS  Article  Google Scholar 

  129. Bourne NK, Millett JCF, Field JE (1999) On the strength of shocked glasses. Proc R Soc A 455(1984):1275–1282. https://doi.org/10.1098/rspa.1999.0360

    CAS  Article  Google Scholar 

  130. Bourne NK (2012) Materials in Mechanical Extremes. Cambridge University Press, Fundamentals and Applications

    Google Scholar 

  131. Dickson P (1990) Fast reaction in primary explosives. University of Cambridge, Cambridge

    Google Scholar 

  132. Bowden FP, Mulcahy MFR, Vines RG, Yoffe A (1946) Detonation of liquid explosives by impact. Nature 157(3978):105–105. https://doi.org/10.1038/157105a0

    CAS  Article  Google Scholar 

  133. Bowden FP, Tabor D (1942) Mechanism of metallic friction. Nature 150(3798):197–199. https://doi.org/10.1038/150197a0

    Article  Google Scholar 

  134. Bowden FP, Gurton OA (1948) Initiation of explosions by grit particles. Nature 162(4121):654–655. https://doi.org/10.1038/162654a0

    CAS  Article  Google Scholar 

  135. Yoffe AD (1957) Initiation and growth of explosion in solids. Nature 180(4576):73–75. https://doi.org/10.1038/180073a0

    CAS  Article  Google Scholar 

  136. Bowden FP, Chaudhri MM (1968) Initiation of explosion in AgN3 and β-PbN6 single crystals by a collapsing bubble. Nature 220(5168):690–694. https://doi.org/10.1038/220690a0

    CAS  Article  Google Scholar 

  137. Chaudhri MM (1976) Stab initiation of explosions. Nature 263(5573):121–122. https://doi.org/10.1038/263121a0

    CAS  Article  Google Scholar 

  138. Dickson PM, Field JE (1993) Initiation and propagation in primary explosives. Proc R Soc Lond A 441(1912):359–375. https://doi.org/10.1098/rspa.1993.0066

    CAS  Article  Google Scholar 

  139. Heavens SN, Field JE, Tabor D (1974) The ignition of a thin layer of explosive by impact. Proc R Soc Lond A 338(1612):77–93. https://doi.org/10.1098/rspa.1974.0074

    CAS  Article  Google Scholar 

  140. Field JE, Swallowe GM, Heavens SN, Tabor D (1982) Ignition mechanisms of explosives during mechanical deformation. Proc R Soc Lond A 382(1782):231–244. https://doi.org/10.1098/rspa.1982.0099

    CAS  Article  Google Scholar 

  141. Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25(11):489–496. https://doi.org/10.1021/ar00023a002

    CAS  Article  Google Scholar 

  142. Bourne NK, Field JE (1991) Bubble collapse and the initiation of explosion. Proc R Soc Lond A 435(1894):423–435. https://doi.org/10.1098/rspa.1991.0153

    Article  Google Scholar 

  143. Rae PJ, Goldrein HT, Palmer SJP, Field JE, Lewis AL (2002) Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives. Proc R Soc Lond Ser A 458(2019):743–762. https://doi.org/10.1098/rspa.2001.0894

    CAS  Article  Google Scholar 

  144. Luebcke PE, Dickson PM, Field JE (1995) An experimental study of the deflagration-to-detonation transition in granular secondary explosives. Proc R Soc Lond A 448(1934):439–448. https://doi.org/10.1098/rspa.1995.0026

    CAS  Article  Google Scholar 

  145. Ramaswamy AL, Field JE (1996) Laser-induced ignition of single crystals of the secondary explosive cyclotrimethylene trinitramine. J Appl Phys 79(8):3842–3847. https://doi.org/10.1063/1.361812

    CAS  Article  Google Scholar 

  146. Watson S, Gifford MJ, Field JE (2000) The initiation of fine grain pentaerythritol tetranitrate by laser-driven flyer plates. J Appl Phys 88(1):65–69. https://doi.org/10.1063/1.373625

    CAS  Article  Google Scholar 

  147. Greenaway MW, Gifford MJ, Proud WG, Field JE, Goveas SG An investigation into the initiation of hexanitrostilbene by laser‐driven flyer plates. In: Shock compression of condensed matter-2001, 2002. vol 1. AIP conference proceedings, pp 1035–1038. https://doi.org/10.1063/1.1483715

  148. Johnson JN, Gray GT, Bourne NK (1999) Effect of pulse duration and strain rate on incipient spall fracture in copper. J Appl Phys 86(9):4892–4901. https://doi.org/10.1063/1.371527

    CAS  Article  Google Scholar 

  149. Gray GT, Bourne NK, Zocher MA, Maudlin PJ, Millett JCF Influence of crystallographic anisotropy on the Hopkinson fracture "spallation" of zirconium. In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter-1999, 2000. AIP conference proceedings. pp 509–512

  150. Millett J, Gray GT, Bourne N (2000) The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr. J Appl Phys 88(6):3290–3294. https://doi.org/10.1063/1.1288500

    CAS  Article  Google Scholar 

  151. Rae PJ, Gray GT, Dattelbaum DM, Bourne NK The Taylor impact response of PTFE (teflon). In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter - 2003, 2004. AIP conference proceedings. pp 671–674

  152. Brown EN, Trujillo CP, Gray GT, Rae PJ, Bourne NK (2007) Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II-III transition. J Appl Phys 101(2):024916. https://doi.org/10.1063/1.2424536

    CAS  Article  Google Scholar 

  153. Sun PL, Cerreta EK, Gray GT, Rae P (2005) The influence of boundary structure on the mechanical properties of ultrafine grained AA1050. Mater Sci Eng A 410:265–268. https://doi.org/10.1016/j.msea.2005.08.068

    CAS  Article  Google Scholar 

  154. Brown EN, Rae PJ, Gray GT (2006) The influence of temperature and strain rate on the tensile and compressive constitutive response of four fluoropolymers. J Phys IV 134:935–940. https://doi.org/10.1051/jp4:2006134143

    CAS  Article  Google Scholar 

  155. Goveas SG (1997) The laser ignition of energetic materials. University of Cambridge, Cambridge

    Google Scholar 

  156. Rae P (2000) Quasistatic studies of the deformation, strength and failure of polymer-bonded explosives. University of Cambridge, Cambridge

    Google Scholar 

  157. Holmberg R, Ouchterlony F (2001) Memoriam per-Anders persson. Fragblast 5(4):197–199. https://doi.org/10.1076/frag.5.4.197.3620

    Article  Google Scholar 

  158. Cai J, Walley SM, Hunt RJA, Proud WG, Nesterenko VF, Meyers MA (2008) High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites. Mater Sci Eng A 472(1–2):308–315. https://doi.org/10.1016/j.msea.2007.03.068

    CAS  Article  Google Scholar 

  159. Brown EN, Rae PJ, Orler EB, Gray GT, Dattelbaum DM (2006) The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE). Mater Sci Eng C 26(8):1338–1343. https://doi.org/10.1016/j.msec.2005.08.009

    CAS  Article  Google Scholar 

  160. Mott NF (1943) Fragmentation of h.E. shells: a theoreticl formula for the distrobution of weights of fragements. Ministry of Supply

  161. Mott NF (1943) A theory of the fragementation of shells and bombs. Ministry of Supply

  162. Mott NF (1943) Fragmentation of shell casings and the theory of rupture in metals. Ministry of Supply

  163. Mott NF (1944) A theory of fragmentation. Application to wire wound bombs such as the American 20 lb. F. Ministry of Supply

  164. Marquez AM, Braithwaite CH, Weihs TP, Krywopusk NM, Gibbins DJ, Vecchio KS, Meyers MA (2016) Fragmentation and constitutive response of tailored mesostructured aluminum compacts. J Appl Phys 119(14):145903. https://doi.org/10.1063/1.4945813

    CAS  Article  Google Scholar 

  165. Marquez AM, Li Z, Braithwaite CH, Weihs TP, Krywopusk NM, Gibbins DJ, Meyers MA (2018) Fragmentation and mechanical performance of tailored nickel-aluminum laminate compacts. Mater Sci Eng A 727:123–132. https://doi.org/10.1016/j.msea.2018.04.027

    CAS  Article  Google Scholar 

  166. Siviour C (2005) High strain rate properties of materials using Hopkinson bar techniques. University of Cambridge, Cambridge

    Google Scholar 

  167. Siviour CR, Walley SM, Proud WG, Field JE (2005) The high strain rate compressive behaviour of polycarbonate and polyvinylidene difluoride. Polymer 46(26):12546–12555. https://doi.org/10.1016/j.polymer.2005.10.109

    CAS  Article  Google Scholar 

  168. Siviour CR, Walley SM, Proud WG, Field JE (2006) Mechanical behaviour of polymers at high rates of strain. J Phys IV 134:949–955. https://doi.org/10.1051/jp4:2006134145

    CAS  Article  Google Scholar 

  169. Jordan JL, Siviour CR, Foley JR, Brown EN (2007) Compressive properties of extruded polytetrafluoroethylene. Polymer 48(14):4184–4195. https://doi.org/10.1016/j.polymer.2007.05.038

    CAS  Article  Google Scholar 

  170. Jordan JL, Foley JR, Siviour CR (2008) Mechanical properties of Epon 826/DEA epoxy. Mech Time Depend Mater 12(3):249–272. https://doi.org/10.1007/s11043-008-9061-x

    CAS  Article  Google Scholar 

  171. Grantham SG, Siviour CR, Proud WG, Field JE (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15(9):1867–1870. https://doi.org/10.1088/0957-0233/15/9/02

    CAS  Article  Google Scholar 

  172. Williamson DM (2006) Deformation and fracture of a polymer bonded explosive and its simulants. University of Cambridge, Cambridge

    Google Scholar 

  173. Sun Q (1992) Solid particle erosion and ballistic impact. University of Cambridge, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jennifer Jordan and the Journal of Dynamic Behavior of Materials for the opportunity to share our memories of our colleague, mentor and friend John E. Field. Neil K. Bourne, Eric N. Brown, Peter Dickson and Philip J. Rae lead this tribute by inviting a wide selection of John Field’s former students and visitors. Not all were able to contribute, but we hope that this represents a collation that reflects all that are listed as authors. We have tried our best but of course accept any mistakes or omissions that will inevitably occur. Some of the text in the biography was contributed by Ineke Field, Peter Grubb, Victor Shim, Mikael Sjödahl. Neil K. Bourne thanks the large of number of colleagues and friends contacted to contribute to this tribute who were so generous with their contributions. Particular thanks go to Ian Hutchings who contacted many of the early students, Stephen Walley who coordinated the biographical and reference library and John Dear who assembled reminiscences from Luleå.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Brown.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Ph.D. Students Supervised by Professor J. E. Field with Year and Title Dissertation was Published

1967 Anthony D. Heyes Velocity of brittle fracture and the interruption of electric currents
1968 Javia Soria-Ruiz Decomposition of solids by brittle fracture
1969 Munawar M. Chaudhri The initiation of fast decomposition of explosive crystals
1970 Howard S. Dobbs Brittle fracture and its application to circuit breaking
1970 Melvyn J. Twigg The propagation of brittle fracture
1971 Graham D. Coley Initiation and growth of explosion in liquids
1971 Ron E. Winter Microdeformation of materials by impact and slow loading
1972 Mohammed A. Zafar Laser damage in transparent dielectrics
1973 Stephen N. Heavens The initiation of explosion by impact
1973 Keith F. G. Fuller The brittle fracture of polymers
1973 Joe T. Hagan Some aspects of brittle fracture and laser damage in dielectrics
1974 Alan C. Woodward Crack propagation in glasses
1974 David A. Gorham High velocity liquid jets and their impact on composite materials
1974 Clifford J. Studman Impact damage to brittle materials during the tillage of stony soils
1974 Ian M. Hutchings [2] The erosion of ductile metals
1975 Michael Coley Initiation and growth of explosion in liquids
1977 David G. Rickerby High speed liquid impact
1977 Hermann M. Hauser [25] Mechanically activated chemical reactions
1978 M. John Matthewson [32] Protective coatings and mechanical properties of materials
1979 Gerry M. Swallowe Effect of grit on the impact initiation of explosives
1980 David R. Andrews [43] Erosion of Metals
1981 Sybrand van der Zwaag [44] Strength and impact properties of IR transparent materials
1991 Paul W. Blair The liquid impact behaviour of some composites and infra-red transparent materials
1982 Alvin W. Wilby Studies of aerodynamics drag
1982 Stephen M. Walley [47] Erosion of polyethylene by solid particle impacts
1984 Chris J. Freeman [93] Strength and fracture properties of diamond
1984 Peter H. Pope Dynamic compression of metals and explosives
1984 John P. Dear [98] The fluid mechanics of high-speed liquid/solid impact
1985 Chris D. Hutchinson The response of intermediate explosives to thermal and shock stimuli
1985 Murray A. Parry High-speed photography of ignition and propagation of fast reaction in some explosives
1985 David Townsend [107] Liquid impact properties of brittle materials
1987 Jonathan M. Huntley [111] Laser speckle and its application to strength measurement and crack propagation
1987 Irene M. Scullion Erosion by solid particle impact
1987 Ian P. Hayward The frictional and strength properties of diamond
1987 Simon N. Mentha High strain rate deformation of metals
1987 Floris M. P. Heukensfeldt-Jansen Investigations of the solid particle erosion properties of polymers
1987 Russell J. Hand Impact and Fracture Properties of Infra-red and Optical Trans-mitting Materials
1988 Timothy G. Leighton [118] Response of gas-filled cavities to acoustic field
1988 Peter N. H. Davies Multiple impact jet apparatus
1988 Nicolas A. Safford High strain rate studies with the direct impact Hopkinson bar
1990 Neil K. Bourne [123] Shock wave interactions with cavities
1990 Peter M. Dickson [131] Fast reaction in primary explosives
1991 Zhu P The strength and friction properties of diamond
1992 C. S. James Pickles Infra-red transmitting materials in a high velocity environment
1992 Qiqing Q. Sun Solid particle erosion and ballistic impact
1992 Colin E. Seward Multiple impact jet apparatus (MIJA) and its application to liquid impact erosion studies
1992 Martin B. Whitworth Studies of dynamic fracture using speckle techniques (with Dr J M Huntley)
1993 Emma D. Nicholson Measurement of the mechanical properties of high modulus coatings
1993 A. Lalitha Ramaswamy Laser initiation of explosives
1993 Pauline P. J. Holes Strength deformation and explosive properties of polymer bonded explosives (PBXs)
1994 Chris W. Beton Numerical analysis of the acoustic emission of bubbles
1994 Andrew J. Hardwick Bubble sizing using acoustic methods (with Dr A J Walton)
1995 Peter L. Kaye Erosive cleaning of surfaces
1995 Peter E. Luebcke Deflagration to detonation transition
1996 Frank M. van Bouwelen Characterisation of CVD diamond
1996 Stefano E. Grillo The Friction and Polishing of Diamond
1996 H. Timothy Goldrein Applications of Optical Strain-Measurement Techniques to Composite Materials
1997 Edward J. Coad The Response of CVD Diamond and Other Brittle Materials to Multiple Liquid Impacts
1997 Gail H. Jilbert Solid particle erosion of infrared transmitting materials, including coated samples
1997 Natalie H. Murray The response of alumina ceramics to plate impact loading
1998 Simon D. Galbraith Plate impact studies of energetic materials
1998 Steve G. Goveas [155] The laser ignition of energetic materials
1998 Claire F. Kennedy Liquid impact of IR materials: equipment development, damage thresholds and transmission losses
1998 Stuart Watson The production and study of laser-driven flyer plates
1999 Alistair G. Thomas The mechanics of coating removal in jet and pipeline flow
1999 Robert H. Telling The fracture and strength of natural and synthetic diamond
2000 Philip J. Rae [156] Quasistatic studies of the deformation, strength and failure of polymer-bonded explosives
2000 Lucy C. Forde Ballistic impact of rods
2001 Jens E. Balzer Low-level impact loading of explosives
2001 Martin W. Greenaway The development and characterization of a laser-driven flyer system
2001 Michael J. Gifford The role of hot spots in the ignition and growth of explosion
2002 Alun R. Davies Solid particle erosion of freestanding CVD diamond
2002 Jonathan R. Hird The polishing of diamond
2002 Steve G. Grantham Digital speckle radiography
2004 Geoff R. Willmott Shock studies of kimberlite, diamond and brittle embedded particles
2004 Ruth I. Hammond Shock and ballistic properties of bainitic steel and tungsten alloys
2004 Avik Chakravarty Electro-optic studies of low-level luminescent processes
2005 Tacye Phillipson Temporal and spatial studies of embedded triboluminescent crystals
2005 Clive R. Siviour [166] High strain rate properties of materials using Hopkinson bar techniques
2006 David M. Williamson [172] Deformation and fracture of a polymer bonded explosive and its simulants
2006 Helen J. Prentice Development of stereoscopic speckle photography techniques for studies of dynamic plate deformation
2007 Helen Czerski Ignition of HMX and RDX
2007 Edward Zaayman The fracture of diamond
2008 Adam Parker Characterisation of novel high explosives for initiator and explosive train applications

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andrews, D.R., Bourne, N.K., Brown, E.N. et al. Contributions to Dynamic Behaviour of Materials Professor John Edwin Field, FRS 1936–2020. J. dynamic behavior mater. 7, 353–382 (2021). https://doi.org/10.1007/s40870-021-00303-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-021-00303-w

Keywords

  • Explosive
  • Liquid
  • Shock
  • Impact
  • Friction
  • Fracture