Field JE (1962) High speed liquid impact and the deformation and fracture of brittle solids. University of Cambridge, Cambridge
Google Scholar
Hutchings IM (1974) The erosion of ductile metals. University of Cambridge, Cambridge
Google Scholar
Winter RE (1971) Microdeformation of materials by impact and slow loading. University of Cambridge, Cambridge
Google Scholar
Fuller K (1973) The brittle fracture of polymers. University of Cambridge, Cambridge
Google Scholar
Graduate Student Edition (2020) CavMag: News from the Cavendish Laboratory. University of Cambridge, Cambridge
Google Scholar
Bowden FP, Brunton JH (1958) Damage to solids by liquid impact at supersonic speeds. Nature 181(4613):873–875. https://doi.org/10.1038/181873a0
Article
Google Scholar
Field JE (1966) Stress waves, deformation and fracture caused by liquid impact. Philos Trans R Soc Lond Ser A 260(1110):86–93
CAS
Article
Google Scholar
Field JE, Heyes AD (1967) The fracture of materials of high elastic moduli. In: Helwich O (ed) Proceedings of the seventh international congress on high-speed photography, Zurich, Switzerland. Verlag, pp 391–398
Tabor D (1969) Frank Philip Bowden, 1903–1968. Biograph Memoirs Fellows R Soc 15:1–38. https://doi.org/10.1098/rsbm.1969.0001
CAS
Article
Google Scholar
Hutchings IM, Winter RE, Field JE (1976) Solid particle erosion of metals: the removal of surface material by spherical projectiles. Proc R Soc Lond A 348(1654):379–392
Article
Google Scholar
Hutchings IM (1977) Deformation of metal surfaces by the oblique impact of square plates. Int J Mech Sci 19(1):45–52. https://doi.org/10.1016/0020-7403(77)90015-7
Article
Google Scholar
Hutchings IM, Winter RE (1975) A simple small-bore laboratory gas gun. J Phys E 8:84–86
Article
Google Scholar
Hutchings I (1977) The erosion of metals by solid particles—a study using high-speed photography, vol 0097. 12th International Congress on High Speed Photography. SPIE,
Walley SM, Field JE (2005) The contribution of the Cavendish Laboratory to the understanding of solid particle erosion mechanisms. Wear 258(1–4):552–566. https://doi.org/10.1016/j.wear.2004.09.013
CAS
Article
Google Scholar
Hutchings I, Little J (1995) Editorial. Wear 186–187:v. https://doi.org/10.1016/0043-1648(95)80043-3
Article
Google Scholar
Field JE (1999) ELSI conference: invited lecture: liquid impact: theory, experiment, applications. Wear 233–235:1–12. https://doi.org/10.1016/S0043-1648(99)00189-1
Article
Google Scholar
Crowther JG (1974) The Cavendish Laboratory, 1874–1974. Science History Publications, Sagamore Beach, MA
Book
Google Scholar
Field J (2008) David Tabor. 23 October 1913 — 26 November 2005. Biographical Memoirs of Fellows of the Royal Society 54:425–459. https://doi.org/10.1098/rsbm.2007.0031
Hagan JT (1973) Some aspects of brittle fracture and laser damage in dielectrics. University of Cambridge, Cambridge
Google Scholar
Hagan JT, Swain MV, Field JE (1978) Stress corrosion characteristics of toughened glasses and ceramics. J Mater Sci 13(1):189–194. https://doi.org/10.1007/BF00739290
CAS
Article
Google Scholar
Hagan JT, Swain MV, Field JE (1979) Fracture-strength studies on annealed and tempered glasses under dynamic conditions. Philos Mag A 39(6):743–756. https://doi.org/10.1080/01418617908239304
CAS
Article
Google Scholar
Swain MV, Hagan JT (1976) Indentation plasticity and the ensuing fracture of glass. J Phys D 9(15):2201–2214. https://doi.org/10.1088/0022-3727/9/15/011
CAS
Article
Google Scholar
Knight CG, Swain MV, Chaudhri MM (1977) Impact of small steel spheres on glass surfaces. J Mater Sci 12(8):1573–1586. https://doi.org/10.1007/BF00542808
Article
Google Scholar
Swain MV, Hagan JT (1980) Rayleigh wave interaction with, and the extension of, microcracks. J Mater Sci 15(2):387–404. https://doi.org/10.1007/PL00020072
Article
Google Scholar
Hauser H (1977) Mechanically activated chemical reactions. University of Cambridge, Cambridge
Google Scholar
Gorham D (1974) High velocity liquid jets and their impact on composite materials. University of Cambridge, Cambridge
Google Scholar
Ng WL, Field JE, Hauser HM (1976) Study of the thermal decomposition of Pentaerythritol Tetranitrate. J Chem Soc Perkin Trans 2:637–639
Article
Google Scholar
Hauser HM, Field JE (1978) New method for TG and DSC data analysis. Thermochim Acta 27(1):1–8. https://doi.org/10.1016/0040-6031(78)85016-3
CAS
Article
Google Scholar
Hauser HM, Field JE, Mohan VK (1983) Fracture-induced decomposition of a brittle high explosive: pentaerythritol tetranitrate. Chem Phys Lett 99(1):66–70. https://doi.org/10.1016/0009-2614(83)80271-1
CAS
Article
Google Scholar
Ng WL, Field JE, Hauser HM (1986) Thermal, fracture, and laser-induced decomposition of pentaerythritol tetranitrate. J Appl Phys 59(12):3945–3952. https://doi.org/10.1063/1.336743
CAS
Article
Google Scholar
Field JE, Hauser HM, Hutchings IM, Woodward AC (1974) Strength testing of diamond. Ind Diamond Rev 34:255–259
Google Scholar
Matthewson MJ (1978) Protective coatings and mechanical properties of materials. University of Cambridge, Cambridge
Google Scholar
van der Zwaag S, Field JE (1982) The effect of thin hard coatings on the Hertzian stress field. Philos Mag A 46(1):133–150. https://doi.org/10.1080/01418618208236213
Article
Google Scholar
van der Zwaag S, Field JE (1983) Indentation and liquid impact studies on coated germanium. Philos Mag A 48(5):767–777. https://doi.org/10.1080/01418618308236543
Article
Google Scholar
Field JE (1985) Cleaving optical fibres using diamond wedges. In: Advances in ultrahard materials application technology, Vol 3. DeBeers Industrial Diamond Division, pp 1–10
van der Zwaag S, Dear JP, Field JE (1986) The effect of double layer coatings of high modulus on contact stresses. Philos Mag A 53(1):101–111. https://doi.org/10.1080/01418618608242810
Article
Google Scholar
Field JE, Samuels B, Townsend D, Hagan JT (1988) Cleavage of optical fibres following diamond-wedge indentation. Philos Mag A 57(2):151–171. https://doi.org/10.1080/01418618808204506
CAS
Article
Google Scholar
Seward C, Field J, Coad E (1994) Liquid impact erosion of bulk diamond, diamond composites and diamond coatings. J Hard Mater 5:49–62
CAS
Google Scholar
Coad EJ, Pickles CSJ, Jilbert GH, Field JE (1996) Aerospace erosion of diamond and diamond coatings. Diam Relat Mater 5(6):640–643. https://doi.org/10.1016/0925-9635(95)00403-3
CAS
Article
Google Scholar
Jilbert GH, Field JE (1998) Optimum coating thickness for the protection of zinc sulphide and germanium substrates from solid particle erosion. Wear 217(1):15–23. https://doi.org/10.1016/S0043-1648(98)00171-9
CAS
Article
Google Scholar
Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical properties of ceramics, second editon. Wiley, Hoboken
Book
Google Scholar
Till minne av professor John Field (2020) https://www.ltu.se/org/tvm/Till-minne-av-professor-John-Field-1.203423. Accessed 25 Jan 2021
Andrews DR (1976) Erosion of metals. University of Cambridge, Cambridge
Google Scholar
van der Zwaag S (1981) Strength and impact properties of IR transparent materials. University of Cambridge, Cambridge
Google Scholar
van der Zwaag S, Field JE (1982) Liquid jet impact damage on zinc sulphide. J Mater Sci 17(9):2625–2636. https://doi.org/10.1007/BF00543897
Article
Google Scholar
van der Zwaag S, Field JE (1983) Rain erosion damage in brittle materials. Eng Fract Mech 17(4):367–379. https://doi.org/10.1016/0013-7944(83)90087-5
Article
Google Scholar
Walley SM (1982) Erosion of polyethylene by solid particle impacts. University of Cambridge, Cambridge
Google Scholar
Bowden FP, Field JE (1964) The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc R Soc A 282:331–352
Google Scholar
Chaudhri MM, Walley SM (1978) Damage to glass surfaces by the impact of small glass and steel spheres. Philos Mag A 37:153–165
Article
Google Scholar
Chaudhri MM, Stephens A (1979) Damage and dynamic hardness of ionic crystals by microparticle impact. Proc SPIE 189:726–729
CAS
Article
Google Scholar
Chaudhri MM, Brophy PA (1980) Single particle impact damage of fused silica. J Mater Sci 15(2):345–352. https://doi.org/10.1007/Bf02396782
CAS
Article
Google Scholar
Hutchings IM, Rochester MC, Camus JJ (1977) A rectangular-bore gas gun. J Phys E: Sci Instrum 10:455–457
CAS
Article
Google Scholar
Andrews DR, Horsfield N (1983) Particle collisions in the vicinity of an eroding surface. J Phys D 16(4):525–538. https://doi.org/10.1088/0022-3727/16/4/014
CAS
Article
Google Scholar
Walley SM, Field JE (1987) The erosion and deformation of polyethylene by solid-particle impact. Philos Trans R Soc A 321(1558):277–303. https://doi.org/10.1098/rsta.1987.0016
CAS
Article
Google Scholar
Hartman WF, Stirbis PP (1973) Rotating band pressures and engraving forces in 155 mm artillery shells. J Eng Mater Technol 95(2):124–129. https://doi.org/10.1115/1.3443132
Article
Google Scholar
Andrews TD (2006) Projectile driving band interactions with gun barrels. J Pressure Vessel Technol 128(2):273–278. https://doi.org/10.1115/1.2172965
Article
Google Scholar
Woodley C (2011) Modelling the internal ballistics of lightweight plastic driving band projectiles. In: Baker E, Templeton D (eds) Proc. 26th Int. Symp. on Ballistics. Destech Publications, Lancaster, PA, pp 613–624
Pope P (1984) Dynamic compression of metals and explosives. University of Cambridge, Cambridge
Google Scholar
Safford N (1988) High strain rate studies with the direct impact Hopkinson bar. University of Cambridge, Cambridge
Google Scholar
Gorham DA (1980) Measurement of stress-strain properties of strong metals at very high rates of strain. In: Institute of Physics Conference Series, London, 1979. pp 47:16–24
Walley SM, Field JE, Pope PH, Safford NA (1989) A study of the rapid deformation behaviour of a range of polymers. Philos Trans R Soc A 328:1–33. https://doi.org/10.1098/rsta.1989.0020
CAS
Article
Google Scholar
Walley SM, Field JE, Pope PH, Safford NA (1991) The rapid deformation-behavior of various polymers. J Phys III 1(12):1889–1925
CAS
Google Scholar
Swallowe G (1979) Effect of grit on the impact initiation of explosives. University of Cambridge, Cambridge
Google Scholar
Walley SM, Field JE (1994) Strain rate sensitivity of polymers in compression from low to high strain rates. DYMAT J 1:211–228
Google Scholar
Coleman KR (1959) The photography of high temperature events. In: Schardin H, Helwich O (eds) Proc. Fourth Int. Kongress Kurzzeitphotographie. Verlag Dr, Othmar Helwich, Darmstadt, Germany, pp 32–39
Google Scholar
Celebrating Churchill’s scientists with Sir Winston’s great-grandson (2015) Science Museum. https://blog.sciencemuseum.org.uk/celebrating-churchills-scientists-with-sir-winstons-great-grandson/. Accessed 25 Jan 2021
Walley SM, Field JE, Biers RA, Proud WG, Williamson DM, Jardine AP (2015) The use of glass anvils in drop-weight studies of energetic materials. Propellants Explos Pyrotech 40(3):351–365. https://doi.org/10.1002/prep.201500043
CAS
Article
Google Scholar
Walley SM, Field JE, Palmer SJP (1992) Impact sensitivity of propellants. Proc R Soc Lond Ser A 438(1904):571–583. https://doi.org/10.1098/rspa.1992.0126
CAS
Article
Google Scholar
Balzer JE, Siviour CR, Walley SM, Proud WG, Field JE (2004) Behaviour of ammonium perchlorate–based propellants and a polymer–bonded explosive under impact loading. Proc R Soc Lond Ser A 460(2043):781–806. https://doi.org/10.1098/rspa.2003.1188
CAS
Article
Google Scholar
Walley SM, Balzer JE, Proud WG, Field JE (2000) Response of thermites to dynamic high pressure and shear. Proc R Soc Lond Ser A 456(1998):1483–1503. https://doi.org/10.1098/rspa.2000.0572
Article
Google Scholar
Balzer J (2003) High-speed photographic study of the drop-weight impact response of RDX/DOS mixtures. Combust Flame 135(4):547–555. https://doi.org/10.1016/j.combustflame.2003.08.009
CAS
Article
Google Scholar
Walley SM, Church PD, Townsley R, Field JE (2000) Validation of a path-dependent constitutive model for FCC and BCC metals using “symmetric” Taylor impact. J Phys IV 10(P9):69–74. https://doi.org/10.1051/jp4:2000912
Article
Google Scholar
Chapman DJ, Radford DD, Walley SM (2005) A history of the Taylor test and its present use in the study of lightweight materials. In: Teixeira-Dias F, Dodd B, Lach E, Schultz P (eds) Design and use of light-weight materials. University of Aveiro, Aveiro, pp 12–24
Google Scholar
Walley SM, Taylor NE, Williamson DM, Jardine AP A novel technique for performing symmetric Taylor impact. In: DYMAT 2015 - 11th international conference on the mechanical and physical behaviour of materials under dynamic loading, 2015. EPJ Web of Conferences, p 01029. https://doi.org/10.1051/epjconf/20159401029
Walley SM, Proud WG, Rae PJ, Field JE (2000) Comparison of two methods of measuring the rapid temperature rises in split Hopkinson bar specimens. Rev Sci Instrum 71(4):1766–1771. https://doi.org/10.1063/1.1150534
CAS
Article
Google Scholar
Field JE, Walley SM, Bourne NK, Huntley JM (1994) Experimental methods at high-rates of strain. J Phys IV 4(C8):3–22. https://doi.org/10.1051/jp4:1994801
Article
Google Scholar
Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng 30(7):725–775. https://doi.org/10.1016/j.ijimpeng.2004.03.005
Article
Google Scholar
Walley SM, Field JE (2001) Elastic wave propagation in materials. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology. Elsevier, Amsterdam, pp 2435–2439
Google Scholar
Walley SM, Field JE (2016) Elastic Wave Propagation in Materials. In: Reference Module in Materials Science and Materials Engineering. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-803581-8.02945-3
Walley SM, Field JE, Greenaway MW (2006) Crystal sensitivities of energetic materials. Mater Sci Technol 22(4):402–413. https://doi.org/10.1179/174328406x91122
CAS
Article
Google Scholar
Walley SM (2007) Shear localization: a historical overview. Metall Mater Trans A 38(11):2629–2654. https://doi.org/10.1007/s11661-007-9271-x
CAS
Article
Google Scholar
Walley SM (2012) Strain localization in energetic and inert granular materials. In: Dodd B, Bai YL (eds) Adiabatic shear localization: frontiers and advances. Elsevier, Amsterdam, pp 267–310
Chapter
Google Scholar
Walley SM (2012) Historical origins of indentation hardness testing. Mater Sci Technol 28(9–10):1028–1044. https://doi.org/10.1179/1743284711y.0000000127
CAS
Article
Google Scholar
Walley SM (2010) Historical review of high strain rate and shock properties of ceramics relevant to their application in armour. Adv Appl Ceram 109(8):446–466. https://doi.org/10.1179/174367609x422180
CAS
Article
Google Scholar
Walley SM (2014) An Introduction to the properties of silica glass in ballistic applications. Strain 50(6):470–500. https://doi.org/10.1111/str.12075
CAS
Article
Google Scholar
Dodd B, Walley SM, Yang R, Nesterenko VF (2015) Major steps in the discovery of adiabatic shear bands. Metall Mater Trans A 46(10):4454–4458. https://doi.org/10.1007/s11661-015-2739-1
CAS
Article
Google Scholar
Siviour CR, Walley SM (2018) Inertial and frictional effects in dynamic compression testing. In: Othman R (ed) The Kolsky-Hopkinson Bar Machine. Springer, Berlin, pp 205–247
Chapter
Google Scholar
Walley SM (2018) Aristotle, projectiles and guns.http://arxiv.org/abs/1804.00716
Walley SM (2018) The origins of the Hopkinson bar technique. In: Othman R (ed) The Kolsky-Hopkinson bar machine. Springer, Berlin, pp 1–25
Google Scholar
Walley SM (2018) The beginnings of the use of iron and steel in heavy armour. In: Kaufman B, Briant CL (eds) Metallurgical design and industry. Springer, New York, pp 71–153
Chapter
Google Scholar
Walley SM (2020) Highways and byways in the history of high rate mechanical testing. J Dyn Behav Mater 6(2):113–158. https://doi.org/10.1007/s40870-020-00237-9
Article
Google Scholar
Walley SM (2020) The effect of temperature gradients on elastic wave propagation in split Hopkinson pressure bars. J Dyn Behav Mater 6(3):278–286. https://doi.org/10.1007/s40870-020-00245-9
Article
Google Scholar
Freeman CJ (1984) Strength and fracture properties of diamond. University of Cambridge, Cambridge
Google Scholar
Field JE (1979) The Properties of diamond. Academic Press, London
Google Scholar
Field JE (1992) The properties of natural and synthetic diamond. Academic Press, London
Google Scholar
Field JE, Freeman CJ (1981) Strength and fracture properties of diamond. Philos Mag A 43(3):595–618. https://doi.org/10.1080/01418618108240397
CAS
Article
Google Scholar
Freeman CJ, Field JE (1989) Friction of diamond, syndite and amborite sliding on various alloys. J Mater Sci 24(3):1069–1072. https://doi.org/10.1007/BF01148800
CAS
Article
Google Scholar
Dear JP (1984) The fluid mechanics of high-speed liquid/solid impact. University of Cambridge, Cambridge, UK, Ph.D.
Google Scholar
Field JE, Lesser MB, Dear JP, Tabor D (1985) Studies of two-dimensional liquid-wedge impact and their relevance to liquid-drop impact problems. Proc R Soc Lond A 401(1821):225–249. https://doi.org/10.1098/rspa.1985.0096
CAS
Article
Google Scholar
Dear JP, Field JE (1988) High-speed photography of surface geometry effects in liquid/solid impact. J Appl Phys 63(4):1015–1021. https://doi.org/10.1063/1.340000
Article
Google Scholar
Field JE, Dear JP, Ogren JE (1989) The effects of target compliance on liquid drop impact. J Appl Phys 65(2):533–540. https://doi.org/10.1063/1.343136
CAS
Article
Google Scholar
Dear JP, Field JE (1988) A study of the collapse of arrays of cavities. J Fluid Mech 190:409–425. https://doi.org/10.1017/S0022112088001387
CAS
Article
Google Scholar
Dear JP, Field JE, Walton AJ (1988) Gas compression and jet formation in cavities collapsed by a shock wave. Nature 332(6164):505–508. https://doi.org/10.1038/332505a0
Article
Google Scholar
Gorham DA, Field JE (1976) The failure of composite materials under high-velocity liquid impact. J Phys D 9(10):1529–1541. https://doi.org/10.1088/0022-3727/9/10/018
CAS
Article
Google Scholar
Gorham DA, Matthewson MJ, Field JE (1979) Damage mechanisms in polymers and composites under high-velocity liquid impact. In: Adler WF (ed) ASTM International. West Conshohocken, PA, pp 320–342
Google Scholar
Walley SM, Field JE, Blair PW, Milford AJ (2004) The effect of temperature on the impact behaviour of glass/polycarbonate laminates. Int J Impact Eng 30(1):31–53. https://doi.org/10.1016/S0734-743X(03)00046-0
Article
Google Scholar
Townsend D (1985) Liquid impact properties of brittle materials. University of Cambridge, Cambridge
Google Scholar
Gorham DA, Pope PH, Field JE (1992) An improved method for compressive stress-strain measurements at very high strain rates. Proc R Soc Lond A 438(1902):153–170. https://doi.org/10.1098/rspa.1992.0099
Article
Google Scholar
Siviour CR, Walley SM, Proud WG, Field JE (2005) Mechanical properties of SnPb and lead-free solders at high rates of strain. J Phys D 38(22):4131–4139. https://doi.org/10.1088/0022-3727/38/22/018
CAS
Article
Google Scholar
Dixon D, Townsend D (1989) Hypervelocity impact research in British Aerospace. Inst Phys Conf Ser 102:553–556
Google Scholar
Huntley JM (1987) Laser speckle and its application to strength measurement and crack propagation. University of Cambridge, Cambridge
Google Scholar
Dalton S (1985) Split second: the world of high speed photography. Salem House Publishers, Topsfield
Google Scholar
Palmer SJP, Field JE, Huntley JM (1993) Deformation, strengths and strains to failure of polymer bonded explosives. Proc R Soc A 440(1909):399–419
CAS
Google Scholar
Huntley J, Field J (1994) High-speed laser speckle photography. Part 2: rotating mirror camera control system and applications. Optical Engineering 33 (5)
Huntley JM, Field JE (1986) Measurement of time-varying displacement fields by multiple-exposure speckle photography. Appl Opt 25(10):1665–1669. https://doi.org/10.1364/AO.25.001665
CAS
Article
Google Scholar
Huntley JM, Field JE (1988) Measurement of crack tip displacement field using laser speckle photography. Eng Fract Mech 30(6):779–790. https://doi.org/10.1016/0013-7944(88)90139-7
Article
Google Scholar
Huntley J, Field J (1989) High resolution moire photography: application to dynamic stress analysis. Opt Eng 28(8):288926
Article
Google Scholar
Leighton TG (1988) Response of gas-filled cavities to acoustic field. University of Cambridge, Cambridge
Google Scholar
Leighton TG, Walton AJ, Field JE (1989) High-speed photography of transient excitation. Ultrasonics 27(6):370–373. https://doi.org/10.1016/0041-624X(89)90036-X
Article
Google Scholar
Leighton TG, Lingard RJ, Walton AJ, Field JE (1991) Acoustic bubble sizing by combination of subharmonic emissions with imaging frequency. Ultrasonics 29(4):319–323. https://doi.org/10.1016/0041-624X(91)90029-8
Article
Google Scholar
Leighton TG, Fagan KJ, Field JE (1991) Acoustic and photographic studies of injected bubbles. Eur J Phys 12(2):77–85. https://doi.org/10.1088/0143-0807/12/2/006
Article
Google Scholar
Leighton TG, Farhat M, Field JE, Avellan F (2003) Cavitation luminescence from flow over a hydrofoil in a cavitation tunnel. J Fluid Mech 480:43–60. https://doi.org/10.1017/S0022112003003732
CAS
Article
Google Scholar
Bourne N (1990) Shock wave interactions with cavities. University of Cambridge, Cambridge
Google Scholar
Field JE, Bourne NK, Palmer SJP, Walley SM, Smallwood JM (1992) Hot-spot ignition mechanisms for explosives and propellants. Philos Trans R Soc Lond Ser A 339(1654):269–283. https://doi.org/10.1098/rsta.1992.0034
CAS
Article
Google Scholar
Bourne NK, Milne AM (2004) Shock to detonation transition in a plastic bonded explosive. J Appl Phys 95(5):2379–2385. https://doi.org/10.1063/1.1644632
CAS
Article
Google Scholar
Kanel GI, Rasorenov SV, Fortov VE (1992) The failure waves and spallations in homogeneous brittle materials. In: Schmidt SC, Dick RD, Forbes JW, Tasker DG (eds) Shock compression of condensed matter–1991. Elsevier, Amsterdam, pp 451–454
Chapter
Google Scholar
Bless SJ, Brar NS, Kanel G, Rosenberg Z (1992) Failure waves in glass. J Am Ceram Soc 75(4):1002–1004. https://doi.org/10.1111/j.1151-2916.1992.tb04174.x
CAS
Article
Google Scholar
Bourne NK, Rosenberg Z, Field JE (1995) High-speed photography of compressive failure waves in glasses. J Appl Phys 78(6):3736–3739. https://doi.org/10.1063/1.360709
CAS
Article
Google Scholar
Bourne NK, Millett JCF, Field JE (1999) On the strength of shocked glasses. Proc R Soc A 455(1984):1275–1282. https://doi.org/10.1098/rspa.1999.0360
CAS
Article
Google Scholar
Bourne NK (2012) Materials in Mechanical Extremes. Cambridge University Press, Fundamentals and Applications
Google Scholar
Dickson P (1990) Fast reaction in primary explosives. University of Cambridge, Cambridge
Google Scholar
Bowden FP, Mulcahy MFR, Vines RG, Yoffe A (1946) Detonation of liquid explosives by impact. Nature 157(3978):105–105. https://doi.org/10.1038/157105a0
CAS
Article
Google Scholar
Bowden FP, Tabor D (1942) Mechanism of metallic friction. Nature 150(3798):197–199. https://doi.org/10.1038/150197a0
Article
Google Scholar
Bowden FP, Gurton OA (1948) Initiation of explosions by grit particles. Nature 162(4121):654–655. https://doi.org/10.1038/162654a0
CAS
Article
Google Scholar
Yoffe AD (1957) Initiation and growth of explosion in solids. Nature 180(4576):73–75. https://doi.org/10.1038/180073a0
CAS
Article
Google Scholar
Bowden FP, Chaudhri MM (1968) Initiation of explosion in AgN3 and β-PbN6 single crystals by a collapsing bubble. Nature 220(5168):690–694. https://doi.org/10.1038/220690a0
CAS
Article
Google Scholar
Chaudhri MM (1976) Stab initiation of explosions. Nature 263(5573):121–122. https://doi.org/10.1038/263121a0
CAS
Article
Google Scholar
Dickson PM, Field JE (1993) Initiation and propagation in primary explosives. Proc R Soc Lond A 441(1912):359–375. https://doi.org/10.1098/rspa.1993.0066
CAS
Article
Google Scholar
Heavens SN, Field JE, Tabor D (1974) The ignition of a thin layer of explosive by impact. Proc R Soc Lond A 338(1612):77–93. https://doi.org/10.1098/rspa.1974.0074
CAS
Article
Google Scholar
Field JE, Swallowe GM, Heavens SN, Tabor D (1982) Ignition mechanisms of explosives during mechanical deformation. Proc R Soc Lond A 382(1782):231–244. https://doi.org/10.1098/rspa.1982.0099
CAS
Article
Google Scholar
Field JE (1992) Hot spot ignition mechanisms for explosives. Acc Chem Res 25(11):489–496. https://doi.org/10.1021/ar00023a002
CAS
Article
Google Scholar
Bourne NK, Field JE (1991) Bubble collapse and the initiation of explosion. Proc R Soc Lond A 435(1894):423–435. https://doi.org/10.1098/rspa.1991.0153
Article
Google Scholar
Rae PJ, Goldrein HT, Palmer SJP, Field JE, Lewis AL (2002) Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives. Proc R Soc Lond Ser A 458(2019):743–762. https://doi.org/10.1098/rspa.2001.0894
CAS
Article
Google Scholar
Luebcke PE, Dickson PM, Field JE (1995) An experimental study of the deflagration-to-detonation transition in granular secondary explosives. Proc R Soc Lond A 448(1934):439–448. https://doi.org/10.1098/rspa.1995.0026
CAS
Article
Google Scholar
Ramaswamy AL, Field JE (1996) Laser-induced ignition of single crystals of the secondary explosive cyclotrimethylene trinitramine. J Appl Phys 79(8):3842–3847. https://doi.org/10.1063/1.361812
CAS
Article
Google Scholar
Watson S, Gifford MJ, Field JE (2000) The initiation of fine grain pentaerythritol tetranitrate by laser-driven flyer plates. J Appl Phys 88(1):65–69. https://doi.org/10.1063/1.373625
CAS
Article
Google Scholar
Greenaway MW, Gifford MJ, Proud WG, Field JE, Goveas SG An investigation into the initiation of hexanitrostilbene by laser‐driven flyer plates. In: Shock compression of condensed matter-2001, 2002. vol 1. AIP conference proceedings, pp 1035–1038. https://doi.org/10.1063/1.1483715
Johnson JN, Gray GT, Bourne NK (1999) Effect of pulse duration and strain rate on incipient spall fracture in copper. J Appl Phys 86(9):4892–4901. https://doi.org/10.1063/1.371527
CAS
Article
Google Scholar
Gray GT, Bourne NK, Zocher MA, Maudlin PJ, Millett JCF Influence of crystallographic anisotropy on the Hopkinson fracture "spallation" of zirconium. In: Furnish MD, Chhabildas LC, Hixson RS (eds) Shock compression of condensed matter-1999, 2000. AIP conference proceedings. pp 509–512
Millett J, Gray GT, Bourne N (2000) The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr. J Appl Phys 88(6):3290–3294. https://doi.org/10.1063/1.1288500
CAS
Article
Google Scholar
Rae PJ, Gray GT, Dattelbaum DM, Bourne NK The Taylor impact response of PTFE (teflon). In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter - 2003, 2004. AIP conference proceedings. pp 671–674
Brown EN, Trujillo CP, Gray GT, Rae PJ, Bourne NK (2007) Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II-III transition. J Appl Phys 101(2):024916. https://doi.org/10.1063/1.2424536
CAS
Article
Google Scholar
Sun PL, Cerreta EK, Gray GT, Rae P (2005) The influence of boundary structure on the mechanical properties of ultrafine grained AA1050. Mater Sci Eng A 410:265–268. https://doi.org/10.1016/j.msea.2005.08.068
CAS
Article
Google Scholar
Brown EN, Rae PJ, Gray GT (2006) The influence of temperature and strain rate on the tensile and compressive constitutive response of four fluoropolymers. J Phys IV 134:935–940. https://doi.org/10.1051/jp4:2006134143
CAS
Article
Google Scholar
Goveas SG (1997) The laser ignition of energetic materials. University of Cambridge, Cambridge
Google Scholar
Rae P (2000) Quasistatic studies of the deformation, strength and failure of polymer-bonded explosives. University of Cambridge, Cambridge
Google Scholar
Holmberg R, Ouchterlony F (2001) Memoriam per-Anders persson. Fragblast 5(4):197–199. https://doi.org/10.1076/frag.5.4.197.3620
Article
Google Scholar
Cai J, Walley SM, Hunt RJA, Proud WG, Nesterenko VF, Meyers MA (2008) High-strain, high-strain-rate flow and failure in PTFE/Al/W granular composites. Mater Sci Eng A 472(1–2):308–315. https://doi.org/10.1016/j.msea.2007.03.068
CAS
Article
Google Scholar
Brown EN, Rae PJ, Orler EB, Gray GT, Dattelbaum DM (2006) The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE). Mater Sci Eng C 26(8):1338–1343. https://doi.org/10.1016/j.msec.2005.08.009
CAS
Article
Google Scholar
Mott NF (1943) Fragmentation of h.E. shells: a theoreticl formula for the distrobution of weights of fragements. Ministry of Supply
Mott NF (1943) A theory of the fragementation of shells and bombs. Ministry of Supply
Mott NF (1943) Fragmentation of shell casings and the theory of rupture in metals. Ministry of Supply
Mott NF (1944) A theory of fragmentation. Application to wire wound bombs such as the American 20 lb. F. Ministry of Supply
Marquez AM, Braithwaite CH, Weihs TP, Krywopusk NM, Gibbins DJ, Vecchio KS, Meyers MA (2016) Fragmentation and constitutive response of tailored mesostructured aluminum compacts. J Appl Phys 119(14):145903. https://doi.org/10.1063/1.4945813
CAS
Article
Google Scholar
Marquez AM, Li Z, Braithwaite CH, Weihs TP, Krywopusk NM, Gibbins DJ, Meyers MA (2018) Fragmentation and mechanical performance of tailored nickel-aluminum laminate compacts. Mater Sci Eng A 727:123–132. https://doi.org/10.1016/j.msea.2018.04.027
CAS
Article
Google Scholar
Siviour C (2005) High strain rate properties of materials using Hopkinson bar techniques. University of Cambridge, Cambridge
Google Scholar
Siviour CR, Walley SM, Proud WG, Field JE (2005) The high strain rate compressive behaviour of polycarbonate and polyvinylidene difluoride. Polymer 46(26):12546–12555. https://doi.org/10.1016/j.polymer.2005.10.109
CAS
Article
Google Scholar
Siviour CR, Walley SM, Proud WG, Field JE (2006) Mechanical behaviour of polymers at high rates of strain. J Phys IV 134:949–955. https://doi.org/10.1051/jp4:2006134145
CAS
Article
Google Scholar
Jordan JL, Siviour CR, Foley JR, Brown EN (2007) Compressive properties of extruded polytetrafluoroethylene. Polymer 48(14):4184–4195. https://doi.org/10.1016/j.polymer.2007.05.038
CAS
Article
Google Scholar
Jordan JL, Foley JR, Siviour CR (2008) Mechanical properties of Epon 826/DEA epoxy. Mech Time Depend Mater 12(3):249–272. https://doi.org/10.1007/s11043-008-9061-x
CAS
Article
Google Scholar
Grantham SG, Siviour CR, Proud WG, Field JE (2004) High-strain rate Brazilian testing of an explosive simulant using speckle metrology. Meas Sci Technol 15(9):1867–1870. https://doi.org/10.1088/0957-0233/15/9/02
CAS
Article
Google Scholar
Williamson DM (2006) Deformation and fracture of a polymer bonded explosive and its simulants. University of Cambridge, Cambridge
Google Scholar
Sun Q (1992) Solid particle erosion and ballistic impact. University of Cambridge, Cambridge
Google Scholar