Skip to main content
Log in

Inelastic Deformation Mechanisms in Shock Compressed Polycrystalline Pure Magnesium at Temperatures Approaching Melt

Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Cite this article

Abstract

In this paper, we investigate inelastic deformation mechanisms in polycrystalline commercially-pure (99.9%) magnesium samples shock-compressed using reverse-geometry normal plate-impact experiments at elevated temperatures. The favorability of orientation for the possible deformation modes (i.e. basal slip, prismatic slip, pyramidal I & II slip and extension/contraction twinning) is investigated using Schmid Factor analysis using the EBSD data. The study is an extension of a recent study by the authors [Wang et al. in J Dyn Behav Mater 3:497–509, 2017], and is motivated by the need to better understand the underlying inelastic deformation mechanisms operative in shock-compressed Mg at incipient plasticity at near-melt temperatures. Electron Backscatter Diffraction analysis of the as-received polycrystalline magnesium samples at room temperature reveal that the \(\langle 10\bar{1}0\rangle\) directions (normal to the prismatic planes) are parallel to the impact direction, while the [0001] poles are aligned with the radial directions (RD). Because of the unfavorable orientation for basal slip and the high Critical Resolved Shear Stresses (CRSS) for the other non-basal slip systems, extension twinning is observed to be the preferred deformation mode in the samples. In addition, results from samples tested at 400 °C, 500 °C, 610 °C and 630 °C, indicate progressive grain coarsening and a notable increase in extension twin activity at the two highest test temperatures used in the study, i.e. 610 °C and 630 °C. In general, for polycrystalline hcp metals, an increase in grain size and test temperatures are understood to promote dislocation-mediated slip and not dislocation twinning; however, in the present experiments, at the two highest test temperatures a notable increase in extension twin area fraction is observed, indicating an increased resistance (suppression) of dislocation slip at incipient inelasticity. These results, along with the experimentally measured particle velocity profiles at the two highest test temperature experiments (610 °C and 630 °C), provide evidence for transition in dislocation-based slip mechanisms from being thermally activated to viscous drag mediated under the normal shock compression and elevated temperature conditions of the present experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Dixit N (2015) A micromechanism based insvestigation of the dynamic behavior of pure magnesium, Ph.D. Dissertation, Johns Hopkins University, Baltimore

  2. Kaiser F, Letzig D, Bohlen J, Styczynski A, Hartig C, Kainer KU (2003) Anisotropic properties of magnesium sheet Az31. In: Kojima Y, Aizawa T, Higashi K, Kamados S (eds) Materials science forum: magnesium alloys 2003. Trans Tech Publications Ltd., Zurich-Uetikon, pp 315–320

    Google Scholar 

  3. Tucker MT, Horstemeyer MF, Gullett PM, El Kadiri H, Whittington WR (2009) Anisotropic effects on the strain rate dependence of a wrought magnesium alloy. Scr Mater 60(3):182–185

    Article  CAS  Google Scholar 

  4. Cepeda-Jiménez C, Molina-Aldareguia J, Pérez-Prado M (2015) Effect of grain size on slip activity in pure magnesium polycrystals. Acta Mater 84:443–456

    Article  CAS  Google Scholar 

  5. Lentz M, Risse M, Schaefer N, Reimers W, Beyerlein I (2016) Strength and ductility with 10–11—10–12 double twinning in a magnesium alloy. Nat Commun 7:11068

    Article  CAS  Google Scholar 

  6. Yu Q, Mishra RK, Minor AM (2012) The effect of size on the deformation twinning behavior in hexagonal close-packed Ti And Mg. J Metals 64(10):1235–1240

    CAS  Google Scholar 

  7. Choi HJ, Kim Y, Shin JH, Bae DH (2010) Deformation behavior of magnesium in the grain size spectrum from nano-to micrometer. Mater Sci Eng A 527(6):1565–1570

    Article  CAS  Google Scholar 

  8. Somekawa H, Mukai T (2005) Effect of grain refinement on fracture toughness in extruded pure magnesium. Scr Mater 53(9):1059–1064

    Article  CAS  Google Scholar 

  9. Chapuis A, Driver JH (2011) Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater 59(5):1986–1994

    Article  CAS  Google Scholar 

  10. Jain A, Agnew SR (2007) Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy Az31b sheet. Mater Sci Eng A 462(1):29–36

    Article  CAS  Google Scholar 

  11. Dudamell N, Ulacia I, Gálvez F, Yi S, Bohlen J, Letzig D, Hurtado I, Pérez-Prado MT (2011) Twinning and grain subdivision during dynamic deformation of a Mg Az31 sheet alloy at room temperature. Acta Mater 59(18):6949–6962

    Article  CAS  Google Scholar 

  12. Klimanek P, Pötzsch A (2002) Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater Sci Eng A 324(1):145–150

    Article  Google Scholar 

  13. Ramesh KT (2002) Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys. Metall Mater Trans A 33:927–935

    Article  Google Scholar 

  14. Jeong J, Alfreider M, Konetschnik R, Kiener D, Oh SH (2018) In-situ tem observation of 101¯ 2 twin-dominated deformation of Mg pillars: twinning mechanism, size effects and rate dependency. Acta Mater 158:407–421

    Article  CAS  Google Scholar 

  15. Barnett MR (2007) Twinning and the ductility of magnesium alloys part II. “contraction” twins. Mater Sci Eng A 464:8–16

    Article  CAS  Google Scholar 

  16. Beyerlein IJ, McCabe RJ, Tomé CN (2011) Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling study. J Mech Phys Solids 59(5):988–1003

    Article  CAS  Google Scholar 

  17. Beyerlein IJ, McCabe R, Tome C (2011) Stochastic processes of 10–12 deformation twinning in hexagonal close-packed polycrystalline zirconium and magnesium. Int J Multiscale Comput Eng 9(4):459–480

    Article  CAS  Google Scholar 

  18. Ma Q, El Kadiri H, Oppedal A, Baird J, Horstemeyer M, Cherkaoui M (2011) Twinning and double twinning upon compression of prismatic textures in an am 30 magnesium alloy. Scr Mater 64(9):813–816

    Article  CAS  Google Scholar 

  19. Al-Samman T, Gottstein G (2008) Room temperature formability of a magnesium Az31 alloy: examining the role of texture on the deformation mechanisms. Mater Sci Eng A 488(1):406–414

    Article  CAS  Google Scholar 

  20. Jiang L, Jonas JJ, Luo AA, Sachdev AK, Godet S (2006) Twinning-induced softening in polycrystalline Am 30 mg alloy at moderate temperatures. Scr Mater 54(5):771–775

    Article  CAS  Google Scholar 

  21. Zhang J, Joshi SP (2012) Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J Mech Phys Solids 60(5):945–972

    Article  CAS  Google Scholar 

  22. Wang T, Zuanetti B, Prakash V (2017) Shock response of commercial purity polycrystalline magnesium under uniaxial strain at elevated temperatures. J Dyn Behav Mater 3(4):497–509

    Article  Google Scholar 

  23. Dixit N, Xie KY, Hemker KJ, Ramesh KT (2015) Microstructural evolution of pure magnesium under high strain rate loading. Acta Mater 87:56–57

    Article  CAS  Google Scholar 

  24. Ostapovets A, Buršík J, Krahula K, Král L, Serra A (2017) On the relationship between and conjugate twins and double extension twins in rolled pure Mg. Philos Mag 97(14):1088–1101

    Article  CAS  Google Scholar 

  25. Figueiredo RB, Poggiali FSJ, Silva CLP, Cetlin PR, Langdon TG (2016) The influence of grain size and strain rate on the mechanical behavior of pure magnesium. J Mater Sci 51(6):3013–3024

    Article  CAS  Google Scholar 

  26. Jain A, Duygulu O, Brown D, Tomé C, Agnew S (2008) Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, Az31b, sheet. Mater Sci Eng A 486(1):545–555

    Article  CAS  Google Scholar 

  27. Barnett M, Keshavarz Z, Beer A, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater 52(17):5093–5103

    Article  CAS  Google Scholar 

  28. Kumar A, Hauser F, Dorn J (1968) Viscous drag on dislocations in aluminum at high strain rates. Acta Metall 16(9):1189–1197

    Article  CAS  Google Scholar 

  29. Regazzoni G, Kocks UF, Follansbee PS (1987) Dislocation kinetics at high strain rates. Acta Metall 35(12):2865–2875

    Article  CAS  Google Scholar 

  30. Winey JM, Renganathan P, Gupta YM (2015) Shock wave compression and release of hexagonal-close-packed metal single crystals: inelastic deformation of C-axis magnesium. J Appl Phys 117(10):105903

    Article  CAS  Google Scholar 

  31. Renganathan P, Winey JM, Gupta YM (2017) Shock compression and release of a-axis magnesium single crystals: anisotropy and time dependent inelastic response. J Appl Phys 121:035901

    Article  CAS  Google Scholar 

  32. Kanel GI, Garkushin GV, Savinykh AS, Razorenov SV, de Resseguier T, Proud WG, Tyutin MR (2014) Shock response of magnesium single crystals at normal and elevated temperatures. J Appl Phys 116(14):143504

    Article  CAS  Google Scholar 

  33. Kanel GI, Zaretsky EB, Razorenov SV, Ashitkov SI, Fortov VE (2017) Unusual plasticity and strength of metals at ultra-short load durations. Physics—Uspekhi 60(5):490–508

    Article  CAS  Google Scholar 

  34. Frutschy KJ, Clifton RJ (1998) High-temperature pressure-shear plate impact experiments on OFHC copper. J Mech Phys Solids 46(10):1723–1743

    Article  CAS  Google Scholar 

  35. Zuanetti B, Luscher DJ, Ramos K, Bolme CA, Prakash V (2021) Dynamic flow stress of pure polycrystalline aluminum: pressure-shear plate impact experiments and extension of dislocation-based modeling to large strains. J Mech Phys Solids 146(104185):1–30

    Google Scholar 

  36. Eswar Prasad K, Ramesh KT (2014) In-situ observations and quantification of twin boundary mobility in polycrystalline magnesium. Mater Sci Eng A 617:121–126

    Article  CAS  Google Scholar 

  37. Prakash V, Mehta N (2012) Uniaxial compression and combined compression-and-shear response of amorphous polycarbonate at high loading rates. Polym Eng Sci 52(6):1217–1231

    Article  CAS  Google Scholar 

  38. Yuan F, Prakash V, Lewandowski JJ (2010) Shear yield and flow behavior of a zirconium-based bulk metallic glass. Mech Mater 42(3):248–255

    Article  Google Scholar 

  39. Liou NS, Okada M, Prakash V (2004) Formation of molten metal films during metal-on-metal slip under extreme interfacial conditions. J Mech Phys Solids 52(9):2025–2056

    Article  CAS  Google Scholar 

  40. Sunny G, Yuan F, Prakash V, Lewandowski JJ (2008) Effect of high strain rates on peak stress in a Zr-based bulk metallic glass. J Appl Phys 104:093522

    Article  CAS  Google Scholar 

  41. Prakash V, Clifton RJ (1992) Experimental and analytical investigations of dynamic fracture under conditions of plane-strain. Fracture mechanics: twenty second symposium, vol 1, 1131st edn. American Society Of Testing Materials, Philadelphia, pp 412–444

    Google Scholar 

  42. Zuanetti B, Wang T, Prakash V (2017) A novel approach for plate impact experiments to determine the dynamic behavior of materials under extreme conditions. J Dyn Behav Mater 3:64–75

    Article  Google Scholar 

  43. Zuanetti B, Wang T, Prakash V (2018) Mechanical response of 99.999% purity aluminum under dynamic uniaxial strain and near melting temperatures. Int J Impact Eng 113:180–190

    Article  Google Scholar 

  44. Yuan FP, Prakash V, Lewandowski JJ (2009) Spall strength of a zirconium-based bulk metallic glass under shock-induced compress ion-and-shear loading. Mech Mater 41(7):886–897

    Article  Google Scholar 

  45. Zuanetti B, Wang T, Prakash V (2017) A Compact fiber-optics based heterodyne combined normal and transverse displacement interferometer. Rev Sci Instrum 88:033108

    Article  CAS  Google Scholar 

  46. Tsai L, Prakash V (2005) Structure of weak shock waves in 2-D layered material systems. Int J Solids Struct 42(2):727–750

    Article  Google Scholar 

  47. Barnett MR (2007) Twinning and the ductility of magnesium alloys part I: “tension” twins. Mater Sci Eng A 464:1–7

    Article  CAS  Google Scholar 

  48. Khosravani A (2012) Application of high resolution electron backscatter diffraction (Hr-Ebsd) techniques to twinning deformation mechanism in Az31 magnesium alloy, MS Thesis. Ira A. Fulton College of Engineering and Technology, Department of Mechanical Engineering. Brigham Young University, Provo, Utah

  49. Austin RA, McDowell DL (2012) Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum. Int J Plast 32–33:134–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the U.S. Department of Energy through the Stewardship Science Academic Alliance (DE-NA0001989 and DE-NA0002919) in conducting the present research. These experiments were conducted at Case Western Reserve University, and since then the PI, Vikas Prakash, has moved to the Institute for Shock Physics at the Washington State University. The authors would also express gratitude to the Swagelok Center for Surface Analysis of Materials (SCSAM) at CWRU for collection of EBSD data and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Prakash, V. Inelastic Deformation Mechanisms in Shock Compressed Polycrystalline Pure Magnesium at Temperatures Approaching Melt. J. dynamic behavior mater. 7, 279–293 (2021). https://doi.org/10.1007/s40870-021-00291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-021-00291-x

Keywords

Navigation