Skip to main content
Log in

FEM Simulation of High Speed Impact Behaviour of Additively Manufactured AlSi10Mg Alloy

  • Research Paper
  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

The present work investigates impact behaviour of additively manufactured AlSi10Mg alloy and ballistic limit of projectiles using FEM simulations. Tensile tests, dynamic tests and elevated temperature tensile tests simulations were performed on smooth and notched specimens to calculate Johnson–Cook material and damage model parameters, which are subsequenty given as inputs for impact simulation. The relationship between residual velocity versus initial projectile velocity is expressed using Jonas–Lambert’s model for calculating ballistic limit. The effects of projectile velocity, its shape, thickness and material property of AlSi10Mg on ballistic limit were thoroughly investigated. C3D8R elements are used to discretize the target plate and mesh transition zone was created in impact region. Johnson–Cook elasto-viscoplastic model was employed to study the ballistic resistance behaviour of AlSi10Mg alloy. Fracture energy value of 43.6 kN/m for AlSi10Mg alloy is used to initiate the damage in target plate. All FE simulations were performed by using ABAQUS/Explicit. It is observed that ballistic impact on 3D printed AlSi10Mg has shown plugging and petaling failure when hemispherical projectile was used while plugging failure in the case of blunt projectiles. The ballistic limit of hemispherical projectiles is found to be higher (311 m/s, 400 m/s) compared to the blunt projectiles (216.5 m/s, 245 m/s). The impact velocity to completely penerate 6 mm thick target plate is relatively higher as compared to 3 mm thick target plate for both projectiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of ongoing study.

Code availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of ongoing study.

References

  1. Li W et al (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125. https://doi.org/10.1016/j.msea.2016.03.088

    Article  CAS  Google Scholar 

  2. Ch SR, Raja A, Jayaganthan R, Vasa NJ, Raghunandan M (2020) Study on the fatigue behaviour of selective laser melted AlSi10Mg alloy. Mater Sci Eng A 781:139180. https://doi.org/10.1016/j.msea.2020.139180

    Article  CAS  Google Scholar 

  3. Ch SR, Raja A, Nadig P, Jayaganthan R, Vasa NJ (2019) Influence of working environment and built orientation on the tensile properties of selective laser melted AlSi10Mg alloy. Mater Sci Eng A 750:141–151. https://doi.org/10.1016/j.msea.2019.01.103

    Article  CAS  Google Scholar 

  4. Hitzler L et al (2019) Fracture toughness of selective laser melted AlSi10Mg. Proc Inst Mech Eng Part L J Mater Des Appl 233(4):615–621. https://doi.org/10.1177/1464420716687337

    Article  CAS  Google Scholar 

  5. Banerjee A, Dhar S, Acharyya S, Datta D, Nayak N (2015) Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel. Mater Sci Eng A 640:200–209. https://doi.org/10.1016/j.msea.2015.05.073

    Article  CAS  Google Scholar 

  6. Shrot A, Bäker M (2012) Determination of Johnson–Cook parameters from machining simulations. Comput Mater Sci 52(1):298–304. https://doi.org/10.1016/j.commatsci.2011.07.035

    Article  Google Scholar 

  7. Gambirasio L, Rizzi E (2016) An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow. Comput Mater Sci 113:231–265. https://doi.org/10.1016/j.commatsci.2015.11.034

    Article  Google Scholar 

  8. Raguraman M, Deb A (2006) Robust prediction of residual velocities and ballistic limits of projectiles for impact on thin aluminium plates. WIT Trans Built Environ 87:205–214. https://doi.org/10.2495/SU060211

    Article  Google Scholar 

  9. Borvik T, Langseth M, Hopperstad OS, Malo KA (2001) Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses—Part I: Experimental study. Int J Impact Eng 27(1):19–35. https://doi.org/10.1016/S0734-743X(01)00034-3

    Article  Google Scholar 

  10. Borvik T, Hopperstad OS, Berstad T, Langseth M (2001a) Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses—Part II: Numerical simulations. Int J Impact Eng 27(1):37–64. https://doi.org/10.1016/S0734-743X(01)00035-5

    Article  Google Scholar 

  11. Gupta NK, Iqbal MA, Sekhon GS (2008) Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates. Int J Impact Eng 35(1):37–60. https://doi.org/10.1016/j.ijimpeng.2006.11.004

    Article  Google Scholar 

  12. Gupta NK, Iqbal MA, Sekhon GS (2006) Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles. Int J Impact Eng 32(12):1921–1944. https://doi.org/10.1016/j.ijimpeng.2005.06.007

    Article  Google Scholar 

  13. Kpenyigba KM, Jankowiak T, Rusinek A, Pesci R (2013) Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation. Thin-Walled Struct 65:93–104. https://doi.org/10.1016/j.tws.2013.01.003

    Article  Google Scholar 

  14. Ben-Dor G, Dubinsky A, Elperin T (2006) High-speed penetration dynamics. https://doi.org/10.1007/1-4020-4239-6

  15. Masri R, Durban D (2006) Dynamic cylindrical cavity expansion in an incompressible elastoplastic medium. Acta Mech 181(1–2):105–123. https://doi.org/10.1007/s00707-005-0245-z

    Article  Google Scholar 

  16. Forrestal MJ, Warren TL, Børvik T (2014) A scaling law for APM2 bullets and aluminum armor. Conf Proc Soc Exp Mech Ser 1(7491):297–300. https://doi.org/10.1007/978-3-319-00771-7_35

    Article  Google Scholar 

  17. Forrestal MJ, Warren TL (2009) Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int J Impact Eng 36(2):220–225. https://doi.org/10.1016/j.ijimpeng.2008.04.005

    Article  Google Scholar 

  18. Hill R (1998) The mathematical theory of plasticity, oxford classic texts in the physical sciences, Oxford University Press pp. 237–254

  19. Borvik T, Holen K, Langseth M, Malo KA (1998) Experimental set-up used in ballistic penetration. Int Conf Struct Under Shock Impact SUSI 32:683–692

    Google Scholar 

  20. Borvik T, Hopperstad OS, Berstad T, Langseth M (2001b) A computational model of viscoplasticity and ductile damage for impact and penetration. Eur J Mech A/Solids 20(5):685–712. https://doi.org/10.1016/S0997-7538(01)01157-3

    Article  Google Scholar 

  21. Burley M, Campbell JE, Dean J, Clyne TW (2018) Johnson–Cook parameter evaluation from ballistic impact data via iterative FEM modelling. Int J Impact Eng 112:180–192. https://doi.org/10.1016/j.ijimpeng.2017.10.012

    Article  Google Scholar 

  22. Dey S, Børvik T, Hopperstad OS, Langseth M (2006) On the influence of fracture criterion in projectile impact of steel plates. Comput Mater Sci 38(1):176–191. https://doi.org/10.1016/j.commatsci.2006.02.003

    Article  CAS  Google Scholar 

  23. Kristoffersen M, Costas M, Koenis T, Brøtan V, Paulsen CO, Børvik T (2020) On the ballistic perforation resistance of additive manufactured AlSi10Mg aluminium plates. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2019.103476

    Article  Google Scholar 

  24. Murugesan M, Jung DW (2019) Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials (Basel) 12(4):609. https://doi.org/10.3390/ma12040609

    Article  CAS  Google Scholar 

  25. Xing X, Duan X, Sun X, Gong H, Wang L, Jiang F (2019) Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique. Materials (Basel) 12(3):455. https://doi.org/10.3390/ma12030455

    Article  CAS  Google Scholar 

  26. Niezgoda T, Morka A (2014) On the numerical methods and physics of perforation in the high-velocity impact mechanics HIGH-VELOCITY IMPACT MECHANICS An objective of this paper is a mutual comparison of few selected numerical approaches with respect to reproducing the fundamental phy

  27. Gumbleton R, Cuenca JA, Klemencic GM, Jones N, Porch A (2019) Evaluating the coefficient of thermal expansion of additive manufactured AlSi10Mg using microwave techniques. Addit Manuf 30:100841. https://doi.org/10.1016/j.addma.2019.100841

    Article  CAS  Google Scholar 

  28. Niu LB, Takaku H, Kobayashi M (2005) Tensile fracture behaviors in double-notched thin plates of a ductile steel. ISIJ Int 45(2):281–287. https://doi.org/10.2355/isijinternational.45.281

    Article  CAS  Google Scholar 

  29. Bai Y, Teng X, Wierzbicki T (2009) On the application of stress triaxiality formula for plane strain fracture testing. J Eng Mater Technol Trans ASME 131(2):0210021–02100210. https://doi.org/10.1115/1.3078390

    Article  CAS  Google Scholar 

  30. C.A.E. User Abaqus 6.12. https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-cdamageevolductile.htm

  31. Ben-Dor G, Dubinsky A, Elperin T (2002) On the Lambert–Jonas approximation for ballistic impact. Mech Res Commun 29(2–3):137–139. https://doi.org/10.1016/S0093-6413(02)00246-X

    Article  Google Scholar 

  32. Wang Y, Chen X, Xiao X, Vershinin VV, Ge R, Li DS (2020) Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy plates struck by cylindrical projectiles with different nose shapes. Int J Impact Eng 139:103498. https://doi.org/10.1016/j.ijimpeng.2019.103498

    Article  Google Scholar 

  33. Senthil K, Arindam B, Iqbal MA, Gupta NK (2017) Ballistic response of 2024 aluminium plates against blunt nose projectiles. Procedia Eng 173:363–368. https://doi.org/10.1016/j.proeng.2016.12.030

    Article  CAS  Google Scholar 

  34. Senthil K, Iqbal MA, Arindam B, Mittal R, Gupta NK (2018) Ballistic resistance of 2024 aluminium plates against hemispherical, sphere and blunt nose projectiles. Thin-Walled Struct 126:94–105. https://doi.org/10.1016/j.tws.2017.02.028

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirmal, R.R., Patnaik, B.S.V. & Jayaganthan, R. FEM Simulation of High Speed Impact Behaviour of Additively Manufactured AlSi10Mg Alloy. J. dynamic behavior mater. 7, 469–484 (2021). https://doi.org/10.1007/s40870-020-00285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-020-00285-1

Keywords

Navigation