Skip to main content
Log in

Shock Response of Commercial Purity Polycrystalline Magnesium Under Uniaxial Strain at Elevated Temperatures

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500–610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of ~105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples  decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramesh K (2002) Effects of high rates of loading on the deformation behavior and failure mechanisms of hexagonal close-packed metals and alloys. Metall Mater Trans A 33(3):927–935

    Article  Google Scholar 

  2. Zuanetti B, Wang T, Prakash V (2017) A novel approach for plate impact experiments to determine the dynamic behavior of materials under extreme conditions. J Dyn Behav Mater 3(1):64–75

    Article  Google Scholar 

  3. Mises RV (1928) Mechanik der plastischen formänderung von kristallen. ZAMM J Appl Math Mech 8(3):161–185

    Article  Google Scholar 

  4. Groves G, Kelly A (1963) Independent slip systems in crystals. Philos Mag 8(89):877–887

    Article  Google Scholar 

  5. Berge F, Krüger L, Ouaziz H, Ullrich C (2015) Influence of temperature and strain rate on flow stress behavior of twin-roll cast, rolled and heat-treated AZ31 magnesium alloys. Trans Nonferrous Met Soc China 25(1):1–13

    Article  Google Scholar 

  6. Wonsiewicz B, Backofen W (1967) Independent slip systems and ductility of hexagonal polycrystals. Trans Metall Soc AIME 239:1422–1433

    Google Scholar 

  7. Kumar A, Hauser F, Dorn J (1968) Viscous drag on dislocations in aluminum at high strain rates. Acta Metall 16(9):1189–1197

    Article  Google Scholar 

  8. Regazzoni G, Kocks U, Follansbee PS (1987) Dislocation kinetics at high strain rates. Acta Metall 35(12):2865–2875

    Article  Google Scholar 

  9. Li Q (2011) Dynamic mechanical response of magnesium single crystal under compression loading: experiments, model, and simulations. J Appl Phys 109(10):103514

    Article  Google Scholar 

  10. Dixit N (2015) A mechanism based investigation of the dynamic behavior of pure magnesium. Dissertation, Johns Hopkins University, Baltimore, MD

  11. Prasad KE, Li B, Dixit N, Shaffer M, Mathaudhu S, Ramesh K (2014) The dynamic flow and failure behavior of magnesium and magnesium alloys. JOM 66(2):291–304

    Article  Google Scholar 

  12. Yoshinaga H, Horiuchi R (1964) On the nonbasal slip in magnesium crystals. Trans Jpn Inst Met 5(1):14–21

    Article  Google Scholar 

  13. Al-Samman T, Molodov KD, Molodov DA, Gottstein G, Suwas S (2012) Softening and dynamic recrystallization in magnesium single crystals during c-axis compression. Acta Mater 60(2):537–545

    Article  Google Scholar 

  14. Kanel G, Garkushin G, Savinykh A, Razorenov S, de Resseguier T, Proud W, Tyutin M (2014) Shock response of magnesium single crystals at normal and elevated temperatures. J Appl Phys 116(14):143504

    Article  Google Scholar 

  15. Zaretsky E (2010) Impact response of cobalt over the 300–1400 K temperature range. J Appl Phys 108(8):083525

    Article  Google Scholar 

  16. Prakash V, Clifton RJ (1990) Experimental and analytical investigation of dynamic fracture under conditions of plane strain. In: Ernst HA, Saxena A, McDowell DL (Eds.) Fracture mechanics: twenty-second symposium, Vol. 1, American Society for Testing, Philadelphia, pp 412–444

    Google Scholar 

  17. Liou NS, Okada M, Prakash V (2004) Formation of molten metal films during metal-on-metal slip under extreme interfacial conditions. J Mech Phys Solids 52(9):2025–2056

    Article  Google Scholar 

  18. Yuan F, Liou N-S, Prakash V (2009) High-speed frictional slip at metal-on-metal interfaces. Int J Plast 25(4):612–634. doi:10.1016/j.ijplas.2008.12.006

    Article  Google Scholar 

  19. Yuan F, Tsai L, Prakash V, Rajendran A, Dandekar D (2007) Spall strength of glass fiber reinforced polymer composites. Int J Solids Struct 44(24):7731–7747. doi:10.1016/j.ijsolstr.2007.05.007

    Article  Google Scholar 

  20. Tsai L, Prakash V (2005) Structure of weak shock waves in 2-D layered material systems. Int J Solids Struct 42(2):727–750

    Article  Google Scholar 

  21. Frutschy KJ, Clifton RJ (1998) High-temperature pressure-shear plate impact experiments using pure tungsten carbide impactors. Exp Mech 38(2):116–125

    Article  Google Scholar 

  22. Zuanetti B, Wang T, Prakash V (2017) A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer. Rev Sci Instrum 88(3):033108

    Article  Google Scholar 

  23. Kumar P, Clifton R (1977) Optical alignment of impact faces for plate impact experiments. J Appl Phys 48(3):1366–1367

    Article  Google Scholar 

  24. Prakash V (1998) Time-resolved friction with applications to high-speed machining: experimental observations. Tribol Trans 41(2):189–198

    Article  Google Scholar 

  25. Clifton R, Bodner SR (1966) An analysis of longitudinal elastic-plastic pulse propagation. J Appl Mech 33(2):248–255

    Article  Google Scholar 

  26. Okada M, Liou N-S, Prakash V, Miyoshi K (2001) Tribology of high-speed metal-on-metal sliding at near-melt and fully-melt interfacial temperatures. Wear 249(8):672–686

    Article  Google Scholar 

  27. Prakash V, Mehta N (2012) Uniaxial compression and combined compression-and-shear response of amorphous polycarbonate at high loading rates. Polym Eng Sci 52(6):1217–1231

    Article  Google Scholar 

  28. Yoo M (1981) Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A 12(3):409–418

    Article  Google Scholar 

  29. Frenkel J (1926) Über die Wärmebewegung in festen und flüssigen Körpern. Zeitschrift für Physik 35(8–9):652–669

    Article  Google Scholar 

  30. Kanel G, Razorenov S, Baumung K, Singer J (2001) Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point. J Appl Phys 90(1):136–143

    Article  Google Scholar 

  31. Hidnert P, Sweeney W (1928) Thermal expansion of magnesium and some of its alloys. Bur Stand Jour Res 1(5):771–792

    Article  Google Scholar 

  32. Poppema T, Jaeger F (1935) The exact measurement of the specific heats of solid substances at higher temperatures. XIX. The specific heat of zinc, magnesium, and their binary alloy, MgZn. Proc Acad Sci Amst 38:510

    Google Scholar 

  33. Marsh SP (1980) LASL shock Hugoniot data. Vol. 5, University of California Press, Berkeley, CA

    Google Scholar 

  34. Shazly M, Prakash V (2008) Shock response of a gamma titanium aluminide. J Appl Phys 104(8):083513

    Article  Google Scholar 

  35. Slutsky LJ, Garland CW (1957) Elastic constants of magnesium from 4.2 K to 300 K. Phys Rev 107(4):972–976

    Article  Google Scholar 

  36. Greeff C, Moriarty JA (1999) Ab initio thermoelasticity of magnesium. Phys Rev B 59(5):3427

    Article  Google Scholar 

  37. Grunschel SE (2009) Pressure-shear plate impact experiments on high-purity aluminum at temperatures approaching melt. Brown University, Providence, RI

    Google Scholar 

  38. Ghosh D, Kingstedt OT, Ravichandran G (2017) Plastic work to heat conversion during high-strain rate deformation of Mg and Mg alloy. Metall Mater Trans A 48(1):14–19

    Article  Google Scholar 

  39. Errandonea D (2010) The melting curve of ten metals up to 12 GPa and 1600 K. J Appl Phys 108(3):033517

    Article  Google Scholar 

  40. Choi H, Kim Y, Shin J, Bae D (2010) Deformation behavior of magnesium in the grain size spectrum from nano-to micrometer. Mater Sci Eng A 527(6):1565–1570

    Article  Google Scholar 

  41. Somekawa H, Mukai T (2005) Effect of grain refinement on fracture toughness in extruded pure magnesium. Scr Mater 53(9):1059–1064

    Article  Google Scholar 

  42. Ulacia I, Dudamell N, Gálvez F, Yi S, Pérez-Prado M, Hurtado I (2010) Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Mater 58(8):2988–2998

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the U.S. Department of Energy through the Stewardship Science Academic Alliance (Grant Nos. DE-NA0001989 and DE-NA0002919) in conducting the present research. The authors would also express gratitude to Swagelok Center for Surface Analysis of Materials (SCSAM) at CWRU for the EBSD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zuanetti, B. & Prakash, V. Shock Response of Commercial Purity Polycrystalline Magnesium Under Uniaxial Strain at Elevated Temperatures. J. dynamic behavior mater. 3, 497–509 (2017). https://doi.org/10.1007/s40870-017-0128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-017-0128-0

Keywords

Navigation