Journal of Dynamic Behavior of Materials

, Volume 3, Issue 4, pp 485–496 | Cite as

Effect of Scale, Material Strength, and Loading on Ejecta Formation from Explosively Driven Aluminum

  • W. Georges
  • J. Loiseau
  • A. Higgins
  • J. Zimmermann


When a shock wave reaches the free surface of a material with surface asperities, particles can be ejected from the surface. The mass and velocity of the ejecta depend on the strength and profile of the shock wave, the material in which the wave travels, and the finish of the free surface. In the present study, aluminum targets with machined triangular perturbations on the free surface were shock loaded by high explosives to 12.0 and 19.4 GPa and by plate impact to 14.5 GPa. In all experiments, the aluminum remained in the solid phase. Two scales of perturbations were tested: 30-\(\upmu\)m-deep and 500-\(\upmu\)m-deep V-shaped grooves with a 60° tip angle. The perturbation growth and ejecta formation were quantified using photonic doppler velocimetry and piezoelectric pins. It was found that the maximum observed velocity from the perturbed surface was nearly identical for both scales but that ejecta formed only when the larger scale perturbations were used. This result may be attributed to a scale effect caused by the smaller perturbation being on the scale of the grain size of the material. When the shock loading was removed by placing an air or vacuum gap between an explosive and the aluminum target, no ejecta was detected to within the instrumentation limits.


Ejecta Scale effect Aluminum Richtmyer–Meshkov instability 



The authors would like to thank Mathieu Beauchesne and Allan Read for assisting with manufacturing many of the components necessary for the experiments. This work was partially supported by grants under the Natural Sciences and Engineering Research Council of Canada Engage project Diagnosing Chemically Driven Imploding Flyers for Magnetized Target Fusion Proof of Concept, National Research Council Canada-Industrial Research Assistance Program project 848270, and the Mitacs Accelerate Cluster project Control of Imploding Metal Liners.


  1. 1.
    Kirkpatrick RC, Lindemuth IR (1997) Magnetized target fusion. Current trends in international fusion research. Springer, New York, pp 319–332. doi: 10.1007/978-1-4615-5867-5_20 CrossRefGoogle Scholar
  2. 2.
    Laberge M (2008) An acoustically driven magnetized target fusion reactor. J Fusion Energy 27(1–2):65–68. doi: 10.1007/s10894-007-9091-4 CrossRefGoogle Scholar
  3. 3.
    Laberge M, Howard S, Richardson D, Froese A, Suponitsky V, Reynolds M, Plant D (2013) Acoustically driven magnetized target fusion. In: IEEE Symposium on Fusion Engineering (SOFE), IEEE. doi: 10.1109/SOFE.2013.6635495
  4. 4.
    Buttler WT, Oró DM, Preston DL, Mikaelian KO, Cherne FJ, Hixson RS, Mariam FG, Morris C, Stone JB, Terrones G, Tupa D (2012) Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J Fluid Mech 703:60–84. doi: 10.1017/jfm.2012.190 CrossRefGoogle Scholar
  5. 5.
    Buttler WT, Oró DM, Olson RT, Cherne FJ, Hammerberg JE, Hixson RS, Monfared SK, Pack CL, Rigg PA, Stone JB, Terrones G (2014) Second shock ejecta measurements with an explosively driven two-shockwave drive. J Appl Phys 116(10):103519. doi: 10.1063/1.4895053 CrossRefGoogle Scholar
  6. 6.
    Dimonte G, Terrones G, Cherne FJ, Ramaprabhu P (2013) Ejecta source model based on the nonlinear Richtmyer–Meshkov instability. J Appl Phys 113(2):024905. doi: 10.1063/1.4773575 CrossRefGoogle Scholar
  7. 7.
    Durand O, Soulard L (2013) Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions. J Appl Phys 114(19):194902. doi: 10.1063/1.4832758 CrossRefGoogle Scholar
  8. 8.
    Mikhailov AL, Ogorodnikov VA, Sasik VS, Raevskii VA, Lebedev AI, Zotov DE, Erunov SV, Syrunin MA, Sadunov VD, Nevmerzhitskii NV et al (2014) Experimental-calculation simulation of the ejection of particles from a shock-loaded surface. J Exp Theor Phys 118(5):785–797. doi: 10.1134/S1063776114040153 CrossRefGoogle Scholar
  9. 9.
    Shao JL, Wang P, He AM (2014) Microjetting from a grooved Al surface under supported and unsupported shocks. J Appl Phys 116(7):073501. doi: 10.1063/1.4891733 CrossRefGoogle Scholar
  10. 10.
    Chen Y, Hong R, Chen H, Tang T, Ren G (2017) Experimental examination of ejecta production on shock-melted Sn targets under various surface roughnesses. J Dyn Behav Mater 3(2):174–179. doi: 10.1007/s40870-016-0089-8 CrossRefGoogle Scholar
  11. 11.
    Roland C, de Rességuier T, Sollier A, Lescoute E, Loison D, Soulard L (2017) Ejection of micron-scale fragments from triangular grooves in laser shock-loaded copper samples. J Dyn Beha Mater 3(2):156–163. doi: 10.1007/s40870-016-0087-x CrossRefGoogle Scholar
  12. 12.
    Brouillette M (2002) The Richtmyer–Meshkov instability. Annu Rev Fluid Mech 34(1):445–468. doi: 10.1146/annurev.fluid.34.090101.162238 CrossRefGoogle Scholar
  13. 13.
    Richtmyer RD (1960) Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math 13(2):297–319. doi: 10.1002/cpa.3160130207 CrossRefGoogle Scholar
  14. 14.
    Mikaelian KO (1998) Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys Rev Lett 80(3):508. doi: 10.1103/PhysRevLett.80.508 CrossRefGoogle Scholar
  15. 15.
    Meyer KA, Blewett PJ (1972) Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys Fluids 15(5):753–759. doi: 10.1063/1.1693980 CrossRefGoogle Scholar
  16. 16.
    Dimonte G, Ramaprabhu P (2010) Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys Fluids 22(1):014104. doi: 10.1063/1.3276269 CrossRefGoogle Scholar
  17. 17.
    Piriz AR, López Cela JJ, Tahir NA, Hoffmann DHH (2006) Richtmyer–Meshkov flow in elastic solids. Phys Rev E 74(3):037301. doi: 10.1103/PhysRevE.74.037301 CrossRefGoogle Scholar
  18. 18.
    Piriz AR, López Cela JJ, Tahir NA, Hoffmann DHH (2008) Richtmyer–Meshkov instability in elastic-plastic media. Phys Rev E 78(5):056401. doi: 10.1103/PhysRevE.78.056401 CrossRefGoogle Scholar
  19. 19.
    Asay JR, Bertholf LD (1978). Model for estimating the effects of surface roughness on mass ejection from shocked materials. Technical report SAND-78-1256, Sandia National Laboratories, Albuquerque, NM, USAGoogle Scholar
  20. 20.
    Cherne FJ, Hammerberg JE, Andrews MJ, Karkhanis V, Ramaprabhu P (2015) On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum. J Appl Phys 118(18):185901. doi: 10.1063/1.4934645 CrossRefGoogle Scholar
  21. 21.
    Hammerberg JE, Buttler WT, Cherne FJ, Andrews MJ, Karkhanis V, Ramaprabhu P, Stevens GD, Turley WD (2017) A source model for ejecta. J Dyn Behav Mater 3(2):316–320. doi: 10.1007/s40870-017-0116-4 CrossRefGoogle Scholar
  22. 22.
    Asay JR, Mix LP, Perry FC (1976) Ejection of material from shocked surfaces. Appl Phys Lett 29(5):284–287. doi: 10.1063/1.89066 CrossRefGoogle Scholar
  23. 23.
    Chen Y, Ren G, Tang T, Li Q, Hu H (2016) Experimental study of micro-spalling fragmentation from melted lead. Shock Waves 26(2):221–225. doi: 10.1007/s00193-015-0601-4 CrossRefGoogle Scholar
  24. 24.
    Chen Y, Hong R, Chen H, Tang T, Ren G (2017) An improved Asay window technique for investigating the micro-spall of an explosively-driven tin. Rev Sci Instrum 88(1):013904. doi: 10.1063/1.4973699 CrossRefGoogle Scholar
  25. 25.
    Zellner MB, Grover M, Hammerberg JE, Hixson RS, Iverson AJ, Macrum GS, Morley KB, Obst AW, Olson RT, Payton JR et al (2007) Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces. J Appl Phys 102(1):013522. doi: 10.1063/1.2752130 CrossRefGoogle Scholar
  26. 26.
    Zellner MB, Vogan McNeil W, Hammerberg JE, Hixson RS, Obst AW, Olson RT, Payton JR, Rigg PA, Routley N, Stevens GD et al (2008) Probing the underlying physics of ejecta production from shocked Sn samples. J Appl Phys 103(12):123502. doi: 10.1063/1.2939253 CrossRefGoogle Scholar
  27. 27.
    Sorenson DS, Minich RW, Romero JL, Tunnell TW, Malone RM (2002) Ejecta particle size distributions for shock loaded Sn and Al metals. J Appl Phys 92(10):5830–5836. doi: 10.1063/1.1515125 CrossRefGoogle Scholar
  28. 28.
    Dynasen Inc. (2016) Accessed 21 Mar 2016
  29. 29.
    Vogan WS, Anderson WW, Grover M, Hammerberg JE, King NSP, Lamoreaux SK, Macrum G, Morley KB, Rigg PA, Stevens GD et al (2005) Piezoelectric characterization of ejecta from shocked tin surfaces. J Appl Phys 98(11):113508. doi: 10.1063/1.2132521 CrossRefGoogle Scholar
  30. 30.
    Strand OT, Goosman DR, Martinez C, Whitworth TL, Kuhlow WW (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77(8):083108. doi: 10.1063/1.2336749 CrossRefGoogle Scholar
  31. 31.
    Primasheet flexible sheet explosive. Accessed 26 Jan 2017
  32. 32.
    Georges W, Loiseau J, Higgins A, Tyler T, Zimmermann J (2017) Reduction of ejecta from asperities on a metal surface upon shock breakout. In: AIP Conference Proceedings, vol 1793, p 060026. AIP Publishing. doi:  10.1063/1.4971582
  33. 33.
    Loiseau J, Georges W, Higgins AJ (2016) Validation of the Gurney model in planar geometry for a conventional explosive. Propellants Explos Pyrotech 41(4):655–664. doi: 10.1002/prep.201500246 CrossRefGoogle Scholar
  34. 34.
    Georges W (2016) Ejecta generation and impact jetting in dynamic loading of aluminum flyers. Masters Thesis. McGill UniversityGoogle Scholar
  35. 35.
    Asay JR (1977) Effect of shock wave risetime on material ejection from aluminum surfaces. Technical report SAND-77-0731, Sandia National Laboratories, Albuquerque, NM USAGoogle Scholar
  36. 36.
    Forbes JW (2013) Shock Wave Compression of Condensed Matter: A Primer. Springer, New York. doi: 10.1007/978-3-642-32535-9 Google Scholar
  37. 37.
    Marsh SP (1980) LASL Shock Hugoniot Data. University of California Press, BerkeleyGoogle Scholar
  38. 38.
    Kim GY, Ni J, Koç M (2006) Modeling of the size effects on the behavior of metals in microscale deformation processes. J Manuf Sci Eng 129(3):470–476. doi: 10.1115/1.2714582 CrossRefGoogle Scholar
  39. 39.
    Trivedi PB, Asay JR, Gupta YM, Field DP (2007) Influence of grain size on the tensile response of aluminum under plate-impact loading. J Appl Phys 102(8):083513. doi: 10.1063/1.2798497 CrossRefGoogle Scholar

Copyright information

© Society for Experimental Mechanics, Inc 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMcGill UniversityMontrealCanada
  2. 2.General FusionBurnabyCanada

Personalised recommendations