Skip to main content
Log in

A Model of a Source of Shock Wave Metal Ejection Based on Richtmyer–Meshkov Instability Theory

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

This paper provides a solution for the problem about effect of a shock wave profile on space–time distribution of velocity, density and mass of particles ejected from material free surface. It is shown that in liquid phase state of material a shock wave amplitude does not affect the ejected material mass, but is determined by the ratio β = k 2 × a 0 × Δx (a 0 is an initial amplitude of perturbation, k = 2π/λ is a wave number, λ is perturbation wavelength, Δx is a triangular shock wave pulse width).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Asay JR, Mix LP, Perry FC (1976) Ejection of material from shocked surfaces. Appl Phys Lett 29(5):284–287

    Article  Google Scholar 

  2. Asay JR (1978) Thick-plate technique for measuring ejecta from shock surfaces. J Appl Phys 49(12):6173–6175

    Article  Google Scholar 

  3. Ogorodnikov VA, Ivanov AG, Mikhaylov AL et al (1998) Particle ejection from the shocked free surface of metals and diagnostic methods for these particles. Combust Explos Shock Waves 34:696. doi:10.1007/BF02672705

    Article  Google Scholar 

  4. Vogan WS, Anderson WW, Grover M, Hammerberg JE, King NSP, Lamoreaux SK, Macrum G, Morley KB, Rigg PA, Stevens GD, Turley WD, Veeser L, Buttler WT (2005) Piezoelectric characterization of ejecta from shocked tin surfaces. J Appl Phys 98:113508

    Article  Google Scholar 

  5. Zellner MB, Grover M, Hammerberg JE, Hixson RS, Iverson AJ, Macrum GS, Morley KB, Obst AW, Olson RT, Payton JR, Rigg PA, Routley N, Stevens GD, Turley WD, Veeser L, Buttler WT (2007) Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces. J Appl Phys 102:013522; idem (2008) Erratum: Effects of shock-breakout pressure on ejection of material from shocked tin surfaces [(2007) J Appl Phys 102, 013522-1-10]. 103:109901

  6. Chen Y, Hu H, Tang T, Ren G, Li Q, Wang R, Buttler WT (2012) Experimental study of ejecta from shock melted lead. J Appl Phys 111:053509

    Article  Google Scholar 

  7. Ogorodnikov VA, Mikhailov AL, Burtsev VV, Lobastov SA, Erunov SV, Romanov AV, Rudnev AV, Kulakov EV, Bazarov YuB, Glushikhin VV, Kalashnik IA, Tsyganov VA, Tkachenko BI (2009) Detecting the ejection of particles from the free surface of a shock-loaded sample. J Exp Theor Phys 109:530–535. doi:10.1134/S1063776109090180

    Article  Google Scholar 

  8. Mikhailov AL, Ogorodnikov VA, Sasik VS, Raevsky VA, Lebedev AI, Zotov DE, Erunov SV, Syrunin MA, Sadunov VD, Nevmerzhitskii NV, Lobastov SA, Burtsev VV, Mishanov AV, Kulakov EV, Satarova AV, Georgievskaya AB, Knyazev VN, Kleshchevnikov OA, Antipov MV, Glushikhin VV, Yurtov IV, Utenkov AA, Sen’kovskii ED, Abakumov SA, Presnyakov DV, Kalashnik IA, Panov KN, Arinin VA, Tkachenko BI, Filyaev VN, Chapaev AV, Andramanov AV, Lebedeva MO, Igonin VV (2014) Experimental-calculation simulation of the ejection of particles from a shock-loaded surface. J Exp Theor Phys 118:785–797. doi:10.1134/S1063776114040153

    Article  Google Scholar 

  9. Cherne FJ, Hammerberg JE, Andrews MJ, Karkhanis V, Ramaprabhu P (2015) On shock driven jetting of liquid from nonsinusoidal surfaces into a vacuum. J Appl Phys 118:185901

    Article  Google Scholar 

  10. Durand O, Soulard L (2015) Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations. J Appl Phys 117:165903

    Article  Google Scholar 

  11. Richtmyer RD (1960) Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math 13:297–319

    Article  Google Scholar 

  12. Meshkov EE (1969) Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn 4:101. doi:10.1007/BF01015969

    Article  Google Scholar 

  13. Georgievskaya AB, Raevsky VA (2012) Estimation of spectral characteristics of particles ejected from the free-surface of metals and liquids under a shock wave effect. AIP Conf Proc 1426:1007–1010

    Article  Google Scholar 

  14. Zellner MB, Dimonte G, Germann TC, Hammerberg JE, Rigg PA, Stevens GD, Turley WD, Buttler WT (2009) Influence of shockwave profile on ejecta. AIP Conf Proc 1195:1047–1050

    Article  Google Scholar 

  15. Antipov MV, Georgievskaya AB, Igonin VV, Lebedev AI, Lebedeva MO, Panov KN, Raevsky VA, Sadunov VD, Utenkov AA, Yurtov IV (2013) The model of particle ejection from a metal free surface. Proc Inter Conf: XVII Khariton’s topical scientific reading. Extreme states of substance. Detonation. Shock waves. pp. 666–674 (Russian)

  16. Antipov MV, Arinin VA, Georgievskaya AB, Gnutov IS, Zamyslov DN, Kalashnikov DA, Lebedeva MO, Lebedev AI, Panov KN, Raevsky VA, Tkachenko BI, Utenkov AA, Fedorov AV, Finyushin SV, Chudakov EvA, Yurtov IV (2017) Experimental and computational damage and ejecta studies of Pb explosively shock loaded to PSL ≈ 32- to 40-GPa. J Dyn Behav Mater

  17. Shao J-L, Wang P, He A-M (2014) Microjetting from a grooved Al surface under supported and unsupported shocks. J Appl Phys 116:073501

    Article  Google Scholar 

  18. Georgievskaya AB, Raevsky VA (2015) Influence of shock wave profile on ejecta distribution by sizes (calculated and theoretical investigations). Proc Inter Conf: XVII Khariton’s topical scientific reading. Extreme states of substance. Detonation. Shock waves. pp. 709–716 (Russian)

  19. Mikaelian KO (1998) Analytical approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys Rev Lett 80:508–511

    Article  Google Scholar 

  20. Buttler WT, Oro DM, Preston DL, Mikaelian KO, Cherne FJ, Hixson RS, Mariam FG, Morris C, Stone JB, Terrones G, Tupa D (2012) Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J Fluid Mech 703:60–84

    Article  Google Scholar 

  21. Kedrinsky VK (2000) Hydrodynamics of explosion: experiment and models. Publ. House of RAS SB, Novosibirsk

    Google Scholar 

  22. Mie G (1903) Zur kinetischen theorie der einatomigen korper. Ann Phys 316:657–697

    Article  Google Scholar 

  23. Gruneisen G (1912) Theorie des festen zustandes einatomiger elemente. Ann Phys 344:257–306

    Article  Google Scholar 

  24. Dobratz BM, Crawford PC (1985) LLNL Explosives Handbook. U California Radiation Laboratory Tech Rep UCRL-52997 Rev.2 January

  25. Sorenson DS, Pazuchanics P, Johnson RP, Malone RM, Kaufman MI, Tibbitts A, Tunnell T, Marks D, Capelle GA, Grover M, Marshall B, Stevens GD, Turley WD, La Lone B (2014) Ejecta particle-size measurements in vacuum and helium gas using ultraviolet in-line Fraunhofer holography. Los Alamos National Laboratory Tech Rep LA-UR-14-24722

  26. Grady DE, Kipp ME (1985) Mechanisms of dynamic fragmentation: Factors governing fragment size. Mech Mater 4:321–324

    Article  Google Scholar 

  27. Schwarzkopf JD, Balachandar S, Buttler WT (2017) Compressible multiphase flow. In: Michaelides E, Crowe CT, Schwarzkopf JD (eds) Multiphase Flow Handbook, 2nd edn. CRC Press, Taylor and Francis Group, Boca Raton, pp 455–514

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Panov K.N. for useful comments, Meshkov E.E. for his interest to our study and for useful discussions regarding Richtmyer–Meshkov instability, Gerdova E.A. for translation of the article into English and to Lebedeva M.O. for assistance in paper work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla B. Georgievskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgievskaya, A.B., Raevsky, V.A. A Model of a Source of Shock Wave Metal Ejection Based on Richtmyer–Meshkov Instability Theory. J. dynamic behavior mater. 3, 321–333 (2017). https://doi.org/10.1007/s40870-017-0118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-017-0118-2

Keywords

Navigation