Analysis of Ashobaa tropical cyclone-induced waves in the Northern Indian Ocean using coupled atmosphere–wave modeling

Abstract

The Tropical Cyclones play a significant role in the world natural disasters. At the time of the cyclones, the atmosphere and the ocean are constantly exchanging energy. In this study, spectral and statistical analyses of the waves affected by the Cyclone Ashobaa in the northern Indian Ocean were investigated. For this purpose, a Coupled Atmosphere–Wave model as a subsystem of COAWST (Coupled Ocean–Atmosphere–Wave–Sediment Transport) was employed. In this modeling system, the Weather Research and Forecasting model (WRF) and the Simulating Waves Near-Shore model (SWAN), were used. Four monitoring points were considered to analyze the waves in the northern Indian Ocean in the offshores of Mumbai, Karachi, Chabahar and Muscat. The results of wave simulation showed that, the wave height on the northeastern offshore of the Arabian Sea is higher than the wave height on the offshore of the Gulf of Oman. As a result, the east and northeast coasts of the Arabian Sea are mostly affected than the coasts of the Gulf of Oman by the Cyclone Ashobaa-induced storm surges and swells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    I. Ginis, Tropical cyclone-ocean interaction. Adv. Fluid Mech. 33, 83–114 (2002)

    Google Scholar 

  2. 2.

    Y. Shengyan, Z. Juncheng, M.V. Subrahmanyam, Sea surface temperature cooling induced by Tropical cyclone Hudhud over Bay of Bengal. Indian J. Mar. Sci. 48, 9–17 (2019)

    Google Scholar 

  3. 3.

    M.N. Allahdadi, N. Chaichitehrani, M. Allahyar, L. McGee, Wave spectral patterns during a historical cyclone: a numerical model for cyclone Gonu in the northern Oman Sea. Open J. Fluid Dyn. 7, 131–151 (2017)

    Article  Google Scholar 

  4. 4.

    V. Mp, G. Raju, Observation of cyclone occurred in Arabian Sea and Bay of Bengal from SAPHIR sensor data. Int. J. Appl. Eng. Res. 12, 12821–12832 (2017)

    Google Scholar 

  5. 5.

    W.M. Gray, Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 96, 669–700 (1968)

    Article  Google Scholar 

  6. 6.

    W.M. Gray, Hurricanes: Their formation, structure and likely role in the tropical circulation, in Meteorology over the Tropical Oceans. ed. by D.B. Shaw (Royal Meteorological Society, Bracknell, 1979), pp. 155–218

    Google Scholar 

  7. 7.

    K. Kikuchi, B. Wang, Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteor. Soc. Japan. 88, 475–496 (2010)

    Article  Google Scholar 

  8. 8.

    K. Singh, J. Panda, K.K. Osuri, N.K. Vissa, Progress in tropical cyclone predictability and present status in the North Indian Ocean region, in recent developments in tropical cyclone dynamics, prediction, and detection. ed. by A.R. Lupo (InTech, London, 2016), pp. 193–215

    Google Scholar 

  9. 9.

    P.J. Webster, G.J. Holland, J.A. Curry, H.R. Chang, Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005)

    Article  Google Scholar 

  10. 10.

    H.M. Fritz, C.D. Blount, F.B. Albusaidi, A.H.M. AlHarthy, Cyclone Gonu storm surge in Oman. Estuar. Coast. Shelf Sci. 86, 102–106 (2010)

    Article  Google Scholar 

  11. 11.

    O. Singh, T. AliKhan, M. Rahman, Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorol. Atmos. Phys. 75, 11–20 (2000)

    Article  Google Scholar 

  12. 12.

    M. Mohapatra, B.K. Bandyopadhyay, L.S. Rathore, Tropical Cyclone Activity over the North Indian Ocean (Springer International Publishing, Cham, 2017), pp. 199–212

    Book  Google Scholar 

  13. 13.

    R. Singh, C.M. Kishtawal, P.K. Pal, P.C. Joshi, Assimilation of the multisatellite data into the WRF model for track and intensity simulation of the Indian Ocean tropical cyclones. Meteorol. Atmos. Phys. 111, 103–119 (2011)

    Article  Google Scholar 

  14. 14.

    J. Panda, H. Singh, P.K. Wang, R.K. Giri, A. Routray, A qualitative study of some meteorological features during tropical cyclone PHET using satellite observations and WRF modeling system. J. Indian Soc. Remote Sens. 43, 45–56 (2015)

    Article  Google Scholar 

  15. 15.

    M. Mujumdar, C. Gnanaseelan, M. Rajeevan, A research report on the 2015 Southwest Monsoon, ESSO/IITM/SERP/SR/02. (2015).

  16. 16.

    K. Koohestani, M.N. Allahdadi, U.R. Kamalian, Observed Response to Cyclone Ashobaa Along Coasts of Arabian Sea and Gulf of Oman. Am. J. Fluid Dyn. 8, 19–29 (2018)

    Google Scholar 

  17. 17.

    CIMSS., Cooperative Institute for Meteorological Satellite Studies Space Science and Engineering Center/ University of Wisconsin-Madison. http://tropic.ssec.wise.edu. Accessed December (2020).

  18. 18.

    Weather, The weather channel, An IBM business. https://weather.com/storms. Accessed December (2020).

  19. 19.

    A.Y. Kwarteng, Remote Sensing Imagery Assessment of Areas Severely Affected by Cyclone Gonu in Muscat, Sultanate of Oman, in Indian Ocean Tropical Cyclones and Climate Change. (Springer, Dordrecht, 2010), pp. 223–232

    Google Scholar 

  20. 20.

    V. Rakesh, P. Goswami, Impact of background error statistics on forecasting of tropical cyclones over the north Indian Ocean. J. Geophys. Res. Atmos. (2011). https://doi.org/10.1029/2011JD015751

    Article  Google Scholar 

  21. 21.

    R.K. Giri, S. Prakash, R. Kumar, J. Panda, Significance of scatterometer winds data in weak vortices diagnosis in Indian seas. Int. J. Phys. Math. Sci. 2, 19–26 (2012)

    Google Scholar 

  22. 22.

    A.K. Mitra, P.K. Kundu, R.K. Giri, A quantitative analysis of KALPANA-1 derived water vapor winds and its impact on NWP model. Meteorol. Atmospheric Phys. 120, 29–44 (2013)

    Article  Google Scholar 

  23. 23.

    M.V. Ratnam, S.R. Babu, S.S. Das, G. Basha, B.V. Krishnamurthy, B. Venkateswararao, Effect of tropical cyclones on the stratosphere–troposphere exchange observed using satellite observations over the north Indian Ocean. Atmospheric Chem. Phys. 16, 8581–8591 (2016)

    Article  Google Scholar 

  24. 24.

    J.S. Kain, The Kain-Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004)

    Article  Google Scholar 

  25. 25.

    F. Jakobsen, H. Madsen, Comparison and further development of parametric tropical cyclone models for storm surge modeling. J. Wind. Eng. Ind. 92, 375–391 (2004)

    Article  Google Scholar 

  26. 26.

    T.A. Hardy, L.B. Mason, J.D. McConochie, Generating Synthetic Tropical Cyclone Databases for Input to Modeling of Extreme Winds, Waves, and Storm Surges (In Indian Ocean Tropical Cyclones and Climate Change. Springer, Dordrecht, 2010), pp. 57–64

    Google Scholar 

  27. 27.

    C. Shaji, S.K. Kar, T. Vishal, Storm surge studies in the North Indian Ocean: A review. Indian J. Mar. Sci. 43, 125–147 (2014)

    Google Scholar 

  28. 28.

    M.A. Sarker, Cyclone hazards in the Arabian sea–A numerical modelling case study of Cyclone Nilofar. Water Environ. J. 31, 284–295 (2017)

    Article  Google Scholar 

  29. 29.

    B. Sahoo, P.K. Bhaskaran, A comprehensive data set for tropical cyclone storm surge-induced inundation for the east coast of India. Int. J. Climatol. 38, 403–419 (2018)

    Article  Google Scholar 

  30. 30.

    A. Thomas, B.K. Samala, A. KAginAlKAr, Simulation of north Indian Ocean tropical cyclones using RAMS numerical weather prediction model. Tropical Cyclone Research and Review. 3, 44–52 (2014)

    Google Scholar 

  31. 31.

    M. Deshpande, S. Pattnaik, P.S. Salvekar, Impact of physical parameterization schemes on numerical simulation of super cyclone Gonu. Nat. Hazards. 55, 211–231 (2010)

    Article  Google Scholar 

  32. 32.

    A. Kumar, J. Done, J. Dudhia, D. Niyogi, Simulations of Cyclone Sidr in the Bay of Bengal with a high-resolution model: sensitivity to large-scale boundary forcing. Meteorol. Atmos. Phys. 114(3–4), 123 (2011)

    Article  Google Scholar 

  33. 33.

    P. Mukhopadhyay, S. Taraphdar, B.N. Goswami, Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. J. Geophys. Res. Atmos. (2011). https://doi.org/10.1029/2010JD014700

    Article  Google Scholar 

  34. 34.

    K.K. Osuri, U.C. Mohanty, A. Routray, M. Mohapatra, D. Niyogi, Real-time track prediction of tropical cyclones over the North Indian Ocean using the ARW model. J. Appl. Meteorol. Climatol. 52, 2476–2492 (2013)

    Article  Google Scholar 

  35. 35.

    H. Murakami, M. Sugi, A. Kitoh, Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim. Dyn. 40, 1949–1968 (2013)

    Article  Google Scholar 

  36. 36.

    S. Mohandas, R. Ashrit, Sensitivity of different convective parameterization schemes on tropical cyclone prediction using a mesoscale model. Nat. hazards. 73, 213–235 (2014)

    Article  Google Scholar 

  37. 37.

    M. Alimohammadi, H. Malakooti, Sensitivity of simulated cyclone Gonu intensity and track to variety of parameterizations: Advanced hurricane WRF model application. J. Earth Syst. Sci. 127(3), 41 (2018)

    Article  Google Scholar 

  38. 38.

    U.C. Mohanty, R. Nadimpalli, S. Mohanty, K.K. Osuri, Recent advancements in prediction of tropical cyclone track over north Indian Ocean basin. Mausam 70, 57–70 (2019)

    Google Scholar 

  39. 39.

    K.K. Osuri, U.C. Mohanty, A. Routray, M.A. Kulkarni, M. Mohapatra, Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat. Hazards. 63, 1337–1359 (2012)

    Article  Google Scholar 

  40. 40.

    S.Y. Hong, Y. Noh, J. Dudhia, A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev 134, 2318–2341 (2006)

    Article  Google Scholar 

  41. 41.

    Z.I. Janjić, The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 927–945 (1994)

    Article  Google Scholar 

  42. 42.

    J.S. Kain, J.M. Fritsch, Convective parameterization for mesoscale models: The Kain-Fritsch scheme, in The representation of cumulus convection in numerical models. ed. by J.S. Kain, J.M. Fritsch (American Meterological Society, Boston, 1993), pp. 165–170

    Google Scholar 

  43. 43.

    A.K. Betts, M.J. Miller, A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX, and Arctic air-mass data sets. Quart. J. R. Meteor. Soc. 112, 693–709 (1986)

    Google Scholar 

  44. 44.

    G.A. Grell, D. Devenyi, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 29, 1–38 (2002)

    Article  Google Scholar 

  45. 45.

    S. Pattanayak, U.C. Mohanty, A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Curr. Sci. 95, 923–936 (2008)

    Google Scholar 

  46. 46.

    J. Dudhia, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107 (1989)

    Article  Google Scholar 

  47. 47.

    E.J. Mlawer, S.J. Taubman, P.D. Brown, M.J. Iacono, S.A. Clough, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 102, 16663–16682 (1997)

    Article  Google Scholar 

  48. 48.

    S.Y. Hong, H.L. Pan, Nocturnal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 124, 2322–2339 (1996)

    Article  Google Scholar 

  49. 49.

    G.A. Grell, Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 121, 764–787 (1993)

    Article  Google Scholar 

  50. 50.

    P.L.N. Murty, K.G. Sandhya, P.K. Bhaskaran, F. Jose, R. Gayathri, T.B. Nair, T.S. Kumar, S.S.C. Shenoi, A coupled hydrodynamic modeling system for PHAILIN cyclone in the Bay of Bengal. Coast. Eng. 93, 71–81 (2014)

    Article  Google Scholar 

  51. 51.

    G. Samson, S. Masson, M. Lengaigne, M.G. Keerthi, J. Vialard, S. Pous, G. Madec, N.C. Jourdain, S. Jullien, C. Menkès, P. Marchesiello, The NOW regional coupled model: Application to the tropical Indian Ocean climate and tropical cyclone activity. J. Adv. Model. Earth Syst. 6, 700–722 (2014)

    Article  Google Scholar 

  52. 52.

    C.V. Srinivas, G.M. Mohan, C.V. Naidu, R. Baskaran, B. Venkatraman, Impact of air-sea coupling on the simulation of tropical cyclones in the North Indian Ocean using a simple 3-D ocean model coupled to ARW. J. Geophys. Res. Atmos. 121, 9400–9421 (2016)

    Article  Google Scholar 

  53. 53.

    R. Wu, H. Zhang, D. Chen, C. Li, J. Lin, Impact of Typhoon Kalmaegi (2014) on the South China Sea: Simulations using a fully coupled atmosphere-ocean-wave model. Ocean Model. 131, 132–151 (2018)

    Article  Google Scholar 

  54. 54.

    M. Alimohammadi, H. Malakooti, M. Rahbani, Comparison of momentum roughness lengths of the WRF-SWAN online coupling and WRF model in simulation of tropical cyclone Gonu. Ocean Dyn. 70, 1531–1545 (2020)

    Article  Google Scholar 

  55. 55.

    V.K. Makin, C. Mastenbroek, Impact of waves on air-sea exchange of sensible heat and momentum. Bound-Layer Meteorol. 79(3), 279–300 (1996)

    Article  Google Scholar 

  56. 56.

    P.A. Janssen, Ø. Breivik, K. Mogensen, F. Vitart, M. Balmaseda, J.R. Bidlot, S. Keeley, M. Leutbecher, L. Magnusson, F. Molteni, Air-sea interaction and surface waves. European Centre for Medium-Range Weather Forecasts. P.36 (2013).

  57. 57.

    F. Veron, W.K. Melville, L. Lenain, Wave-coherent air–sea heat flux. J. Phys. Oceanogr. 38(4), 788–802 (2008)

    Article  Google Scholar 

  58. 58.

    E.L. Andreas, K.A. Emanuel, Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci. 58(24), 3741–3751 (2001)

    Article  Google Scholar 

  59. 59.

    N. Kihara, H. Hirakuchi, A Model for Air-Sea Interaction Bulk Coefficient over a Warm Mature Sea under Strong Wind. J. Phys. Oceanogr. 38(6), 1313–1326 (2008)

    Article  Google Scholar 

  60. 60.

    U. Rizza, E. Canepa, A. Ricchi, D. Bonaldo, S. Carniel, M. Morichetti, G. Passerini, L. Santiloni, F.S. Puhales, M.M. Miglietta, Influence of wave state and sea spray on the roughness length: Feedback on medicanes. Atmos. 9(8), 301 (2018)

    Article  Google Scholar 

  61. 61.

    J. Kepert, C. Fairall, J.W. Bao, Modeling the interaction between the atmospheric boundary layer and evaporating sea spray droplets, in Air-Sea Exchange: Physics. (Chemistry and Dynamics. Springer, Netherlands, Dordrecht, 1999), pp. 363–409

    Google Scholar 

  62. 62.

    Z. Zeng, Y. Wang, Y. Duan, L. Chen, Z. Gao, On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv. Atmos. Sci. 27(2), 337–355 (2010)

    Article  Google Scholar 

  63. 63.

    A.V. Soloviev, R. Lukas, M.A. Donelan, B.K. Haus, I. Ginis, The air-sea interface and surface stress under tropical cyclones. Sci. Rep. 4(1), 1–6 (2014)

    Google Scholar 

  64. 64.

    K.A. Emanuel, Sensitivity of tropical cyclones to surface exchange coefficients and a revised steadystate model incorporating eye dynamics. J. Atmos. Sci. 52(22), 3969–3976 (1995)

    MathSciNet  Article  Google Scholar 

  65. 65.

    H. Charnock, Wind Stress on Water: An Hypothesis. Q. J. R. Meteorol. Soc. 81, 320–332 (1955)

    Article  Google Scholar 

  66. 66.

    T.N. Krishnamurti, S. Pattnaik, L. Stefanova, T.V. Kumar, B.P. Mackey, A.J. O’shay, R.J. Pasch, The hurricane intensity issue. Mon. Weather Rev. 133(7), 1886–1912 (2005)

    Article  Google Scholar 

  67. 67.

    S.S. Chen, J.F. Price, W. Zhao, M.A. Donelan, E.J. Walsh, The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Am. Meteorol. Soc. 88(3), 311–317 (2007)

    Article  Google Scholar 

  68. 68.

    C. Davis, W. Wang, S.S. Chen, Y. Chen, K. Corbosiero, M. DeMaria, J. Dudhia, G. Holland, J. Klemp, J. Michalakes, H. Reeves, Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. weather Rev. 136(6), 1990–2005 (2008)

    Article  Google Scholar 

  69. 69.

    J.C. Warner, C.R. Sherwood, R.P. Signell, C.K. Harris, H.G. Arango, Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. and Geosci. 34, 1284–1306 (2008)

    Article  Google Scholar 

  70. 70.

    W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, W. Wang, J.G. Powers, A description of the advanced research WRF version 2 (No. NCAR/TN-468+ STR), National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div. (2005).

  71. 71.

    N.R.R.C. Booij, R.C. Ris, L.H. Holthuijsen, A third-generation wave model for coastal regions:1. Model description and validation. J. Geophys. Res. Oceans. 104, 7649–7666 (1999)

    Article  Google Scholar 

  72. 72.

    R. Jacob, J. Larson, E. Ong, M× N communication and parallel interpolation in Community Climate System Model Version 3 using the model coupling toolkit. The Int. J. High Perform. Comput. Appl. 19, 293–307 (2005)

    Article  Google Scholar 

  73. 73.

    L.H. Holthuijsen, Waves in Oceanic and Coastal Waters (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  74. 74.

    J.W. Larson, B. Norris, E.T. Ong, D.E. Bernholdt, J.B. Drake, W.R. Elwasif, M.W. Ham, C.E. Rasmussen, G. Kumfert, D.S. Katz, S. Zhou, Components, the Common Component Architecture, and the Climate/Weather/Ocean Community, In 84th American Meteorological Society Annual Meeting (American Meteorological Society Seattle, Washington, 2004).

    Google Scholar 

  75. 75.

    J.C. Warner, B. Armstrong, R. He, J.B. Zambon, Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model. 35, 230–244 (2010)

    Article  Google Scholar 

  76. 76.

    P.K. Taylor, M.J. Yelland, The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr. 31, 572–590 (2000)

    Article  Google Scholar 

  77. 77.

    A.S. Monin, A.M. Obukhov, Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib, Geophys. Inst. Acad. Sci USSR. 151, e187 (1954)

    Google Scholar 

  78. 78.

    Model implementation and sensitivity, F. Chen, J. Dudhia, Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I. Mon. Weather Rev. 129, 569–585 (2001)

    Article  Google Scholar 

  79. 79.

    M. Nakanishi, H. Niino, An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound. Layer Meteor. 119, 397–407 (2006)

    Article  Google Scholar 

  80. 80.

    S.Y. Hong, J. Dudhia, S.H. Chen, A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitatio. Mon. Weather Rev. 132, 103–120 (2004)

    Article  Google Scholar 

  81. 81.

    R.M. Sorensen, Basic Coastal Engineering, vol. 10 (Springer Science & Business Media, Germany, 2005).

    Google Scholar 

  82. 82.

    Z. Liu, P. Frigaard, Generation and Analysis of Random Waves (Laboratory of Hydraulics and Port Building, Department of Water, Soil and Environmental Engineering, 1999).

    Google Scholar 

  83. 83.

    K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP), Deutsches Hydrographic Institute of Hamburg., 1973).

    Google Scholar 

  84. 84.

    M.K. Ochi, Ocean Waves: The Stochastic Approach, vol. 6 (Cambridge University Press, Cambridge, 2005).

    MATH  Google Scholar 

  85. 85.

    C.L. Bretschneider, Generation of waves by wind. State of the art (No. Nesco-Sn-134–6). National Engineering Science Co Washington Dc. (1965).

  86. 86.

    M.D. Earle, K.E. Steele, D.W.C. Wang, Use of advanced directional wave spectra analysis methods. Ocean Eng. 26, 1421–1434 (1999)

    Article  Google Scholar 

  87. 87.

    M.S. Longuet-Higgins, The generation of capillary waves by steep gravity waves. J. Fluid Mech. 16, 138–159 (1963)

    MathSciNet  Article  Google Scholar 

  88. 88.

    D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M.A. Balmaseda, G. Balsamo, D.P. Bauer, P. Bechtold, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011)

    Article  Google Scholar 

  89. 89.

    V.S. Kumar, T.M. Naseef, Performance of ERA-Interim wave data in the nearshore waters around India. J. Atmos. Ocean Technol. 32, 1257–1269 (2015)

    Article  Google Scholar 

  90. 90.

    G.J. Komen, L. Cavaleri, M. Doneland, K. Hasselmann, S. Hasselmann, P.A.E.M. Janssen, Dynamics and Modelling of Ocean Waves. Final Rep of the WAM Group/SCOR WG 83 (Cambridge University Press, Cambridge, 1994), p. 532

    MATH  Book  Google Scholar 

  91. 91.

    IBTrACS, International Best Track Archive for Climate Stewardship dataset which was developed by the NOAA National Climatic Data Center. https://www.ncdc.noaa.gov/ibtracs/. Accessed December (2020).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pakhirehzan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pakhirehzan, M. Analysis of Ashobaa tropical cyclone-induced waves in the Northern Indian Ocean using coupled atmosphere–wave modeling. Mar Syst Ocean Technol (2021). https://doi.org/10.1007/s40868-021-00094-8

Download citation

Keywords

  • Cyclone Ashobaa
  • COAWST
  • WRF
  • SWAN
  • Wave Spectrum