Probabilistic structural reliability analysis of a horizontal axis tidal turbine blade by considering the moisture effects on the blade material

Abstract

The use of composite materials in marine structures like the horizontal axis tidal turbine blade introduces inherent uncertainties in the material properties of the blade. Further, the blade material ages because of the absorption of seawater into the material. Hence, whilst performing the static structural analysis of the blade, the probabilistic nature of the material properties, as well as its degradation due to ageing, must be considered. In this study, the probabilistic structural response of a 0.5 m blade was estimated by considering the experimentally determined statistical distributions of the dry and aged material properties. The polynomial chaos expansion (PCE) method was used to build a surrogate model to mimic the static analysis of the blade, which was used in conjunction with the Monte Carlo simulation to estimate the distributions of the structural response of the blade and the probability of failure of the dry and aged blade. Stochastic convergence was used to check the accuracy of the surrogate model built via the PCE method. The study revealed a statistically significant increase in the probability of failure of the blade due to the ageing induced degradation of the blade material. Further, the need for a probabilistic structural analysis was also established.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Data availability

Data and material will be made available upon request from the readers.

Code availability

The authors will that the MATLAB code used in this project be kept as proprietary.

References

  1. 1.

    H. Agarwal, J.E. Renaud, E.L. Preston, D. Padmanabhan, Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab. Engi. Syst. Saf. 85, 281–294 (2004)

    Google Scholar 

  2. 2.

    P. Alam, C.C.M. RobertBrádaigh, Tidal turbine blade composites: a review on the effects of hygrothermal aging on the properties of CFRP. Compos. B 149, 248–259 (2018)

    Google Scholar 

  3. 3.

    W.M.J. Batten, A.S. Bahaj, A.F. Molland, J.R. Chaplin, The prediction of the hydrodynamic performance of marine current turbines. Renew. Energy 33, 1085–1096 (2008)

    Google Scholar 

  4. 4.

    A. Bhattacharyya, On a measure of divergence between two multinomial populations. Sankhyā 7, 401–406 (1946)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    S. Bianchi, A. Bianchini, G. Ferrara, L. Ferrari, Small wind turbines in the built environment: influence of flow inclination on the potential energy yield. J. Turbomach. 136, 041013–041013–41018 (2013)

    Google Scholar 

  6. 6.

    J.I.R. Blake, R.A. Shenoi, P.K. Das, N. Yang, The application of reliability methods in the design of stiffened FRP composite panels for marine vessels. Ships Offshore Struct. 4, 287–297 (2009)

    Google Scholar 

  7. 7.

    G. Blatman, B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab. Eng. Mech. 25, 183–197 (2010)

    Google Scholar 

  8. 8.

    G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230, 2345–2367 (2011)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook (Wiley, New York, 2001)

    Google Scholar 

  10. 10.

    M. Chiachio, J. Chiachio, G. Rus, Reliability in composites: a selective review and survey of current development. Compos. B 43, 902–913 (2012)

    Google Scholar 

  11. 11.

    D. Choqueuse., P. Davies, F. Mazeas, R. Baizeau, Aging of composites in water: comparison of five materials in terms of absorption kinetics and evolution of mechanical properties. In: High Temperature and Environmental Effects on Polymeric Composites: 2nd Volume. ASTM International (1997)

  12. 12.

    J.L. Clarke, Structural Design of Polymer Composites: Eurocomp Design Code and Background Document (CRC Press, New York, 2014)

    Google Scholar 

  13. 13.

    G.B. Coleman, H.C. Andrews, Image segmentation by clustering. Proc. IEEE 67, 773–785 (1979)

    Google Scholar 

  14. 14.

    P. Davies, Accelerated Aging Tests for Marine Energy Applications. In: Durability of composites in a marine environment. Springer (2014)

  15. 15.

    M. di Sciuva, D. Lomario, A comparison between Monte Carlo and FORMs in calculating the reliability of a composite structure. Compos. Struct. 59, 155–162 (2003)

    Google Scholar 

  16. 16.

    B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression. Ann. Stat. 32, 407–499 (2004)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    E.M. Fagan, S.B. Leen, C.R. Kennedy, J. Goggins, Finite Element Based Damage Assessment of Composite Tidal Turbine Blades. Journal of Physics: Conference Series. IOP Publishing. (2015)

  18. 18.

    D.M. Frangopol, S. Recek, Reliability of fiber-reinforced composite laminate plates. Probab. Eng. Mech. 18, 119–137 (2003)

    Google Scholar 

  19. 19.

    A.M. Gadade, A. Lal, B.N. Singh, Stochastic Buckling and First Ply Failure Analysis of Laminated Composite Plate (Springer, New Delhi, 2015), pp. 125–135

    Google Scholar 

  20. 20.

    W. Gautschi, Orthogonal polynomials: computation and approximation. 2004. Numerical Mathematics and Scientific Computations. (2004)

  21. 21.

    D.M. Grogan, S.B. Leen, C.R. Kennedy, C.M. Obradaigh, Design of composite tidal turbine blades. Renew. Energy 57, 151–162 (2013)

    Google Scholar 

  22. 22.

    A. Haldar, S. Mahadevan, Reliability Assessment Using Stochastic Finite Element Analysis (Wiley, New York, 2000)

    Google Scholar 

  23. 23.

    K.M. Hamdia, M. Silani, X. Zhuang, P. He, T. Rabczuk, Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. Int. J. Fract. 206, 215–227 (2017)

    Google Scholar 

  24. 24.

    P. Harper, S. Hallett, A. Fleming, M. Dawson, Advanced fibre-reinforced composites for marine renewable energy devices, in Marine Applications of Advanced Fibre-Reinforced Composites, ed. by J. Graham-Jones, J. Summerscales (Woodhead Publishing, New Delhi, 2016)

    Google Scholar 

  25. 25.

    P.W. Harper, S.R. Hallett, Advanced numerical modelling techniques for the structural design of composite tidal turbine blades. Ocean Eng. 96, 272–283 (2015)

    Google Scholar 

  26. 26.

    Z. Hu, H. Li, X. Du, K. Chandrashekhara, Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades. Struct. Multidiscip. Optim. 47, 765–781 (2013)

    Google Scholar 

  27. 27.

    H.K. Jeong, R.A. Shenoi, Probabilistic strength analysis of rectangular FRP plates using Monte Carlo simulation. Comput. Struct. 76, 219–235 (2000)

    Google Scholar 

  28. 28.

    C.R. Kennedy, S.B. Leen, C.M. Brádaigh, A preliminary design methodology for fatigue life prediction of polymer composites for tidal turbine blades. Proc. Inst. Mech. Eng. Part L 226, 203–218 (2012)

    Google Scholar 

  29. 29.

    G. J. Klir, M.J. Wierman, Uncertainty-based information: elements of generalized information theory, Physica. (2013)

  30. 30.

    C. Lataniotis, S. Marelli, B. Sudret, UQLab user manual–The Input module. Report UQLab-V0, pp. 9–102 (2015)

  31. 31.

    H. Li, Z. Hu, K. Chandrashekhara, X. Du, R. Mishra, Reliability-based fatigue life investigation for a medium-scale composite hydrokinetic turbine blade. Ocean Eng. 89, 230–242 (2014)

    Google Scholar 

  32. 32.

    J.F. Manwell, J.G. McGowan, A.L. Rogers, Aerodynamics of Wind Turbines. Wind Energy Explained (Wiley, New York, 2009)

    Google Scholar 

  33. 33.

    S. Marelli, B. Sudret, UQLab: A framework for uncertainty quantification in Matlab. Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management. (2014)

  34. 34.

    S. Marelli, B. Sudret, UQLab user manual-polynomial chaos expansions. Chair of Risk, Safety & Uncertainty Quantification, ETH Zürich, 0.9-104 edition, pp. 97–110 (2015)

  35. 35.

    M.R. Motley, Y.L. Young, Influence of uncertainties on the response and reliability of self-adaptive composite rotors. Compos. Struct. 94, 114–120 (2011)

    Google Scholar 

  36. 36.

    H. Nakayasu, Z.I. Maekawa, A comparative study of failure criteria in probabilistic fields and stochastic failure envelopes of composite materials. Reliab. Eng. Syst. Saf. 56, 209–220 (1997)

    Google Scholar 

  37. 37.

    B. Navaneetharaj, N.G.R. Iyengar, D. Yadav, Response of composite plates with random material properties using FEM and Monte Carlo simulation. Adv. Composite Mater. 7, 219–237 (1998)

    Google Scholar 

  38. 38.

    S. Parsons, G. Parsons, Qualitative Methods for Reasoning Under Uncertainty (Mit Press, Cambridge, 2001)

    Google Scholar 

  39. 39.

    A.N. Rajaram, Structural reliability study of Hydrokinetic turbine blade operating in tropical conditions. (2019)

  40. 40.

    A.N. Rajaram, N. Srikanth, Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of South East Asia. Renew. Energy. 146, 166–180 (2019)

    Google Scholar 

  41. 41.

    D. Sale, HARP_Opt horizontal axis rotor performance optimization. Natl. Renew. Energy Lab. (2013).

  42. 42.

    P.D. Soden, A.S. Kaddour, M.J. Hinton, Recommendations for designers and researchers resulting from the world-wide failure exercise, in Failure Criteria in Fibre-Reinforced-Polymer Composites, ed. by M.J. Hinton, A.S. Kaddour, P.D. Soden (Elsevier, Oxford, 2004)

    Google Scholar 

  43. 43.

    S. Sriramula, M.K. Chryssanthopoulos, Quantification of uncertainty modelling in stochastic analysis of FRP composites. Compos. A 40, 1673–1684 (2009)

    Google Scholar 

  44. 44.

    N. Tual, N. Carrere, P. Davies, T. Bonnemains, E. Lolive, Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades. Compos. A 78, 380–389 (2015)

    Google Scholar 

  45. 45.

    W.C. Tucker, R. Brown, L. Russell, Corrosion between a graphite/polymer composite and metals. J. Compos. Mater. 24, 92–102 (1990)

    Google Scholar 

  46. 46.

    D.V. Val, L. Chernin, D.V. Yurchenko, Reliability analysis of rotor blades of tidal stream turbines. Reliab. Eng. Syst. Saf. 121, 26–33 (2014)

    Google Scholar 

  47. 47.

    G. van Vinckenroy, W.P. de Wilde, The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behaviour of composite materials structural components. Compos. Struct. 32, 247–253 (1995)

    Google Scholar 

  48. 48.

    M.B. Whiteside, S.T. Pinho, P. Robinson, Stochastic failure modelling of unidirectional composite ply failure. Reliab. Eng. Syst. Saf. 108, 1–9 (2012)

    Google Scholar 

  49. 49.

    Wiener, N. 1938. The homogeneous chaos. American Journal of Mathematics,60, 897–936

    MathSciNet  MATH  Google Scholar 

  50. 50.

    D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137–167 (2003)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Y.L. Young, J.W. Baker, M.R. Motley, Reliability-based design and optimization of adaptive marine structures. Compos. Struct. 92, 244–253 (2010)

    Google Scholar 

Download references

Acknowledgements

The assistance provided by Lui Man To from the school of Mechanical and Aerospace Engineering at the Nanyang Technological University in conducting experiments and data collection are greatly acknowledged.

Funding

I would like to acknowledge the Interdisciplinary Graduate School of the Nanyang Technological University for funding my PhD. The authors also acknowledge the Energy Research Institute @ NTU for funding this work under the ICER (International Centre for Energy Research) collaboration programme. The collaboration is between the Technische Universität München, Germany and the Nanyang Technological University, Singapore.

Author information

Affiliations

Authors

Contributions

NRA: Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Visualization, Writing-Original Draft, Project administration. SN: Conceptualization, Resources, Supervision, Writing-Review & Editing, Funding acquisition. GBC: Resources, Data curation, Writing-Review & Editing, Supervision.

Corresponding author

Correspondence to Rajaram Attukur Nandagopal.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Attukur Nandagopal, R., Narasimalu, S. & Chai, G.B. Probabilistic structural reliability analysis of a horizontal axis tidal turbine blade by considering the moisture effects on the blade material. Mar Syst Ocean Technol 15, 253–269 (2020). https://doi.org/10.1007/s40868-020-00088-y

Download citation

Keywords

  • Uncertainty
  • Tidal turbine blade
  • Marine effects
  • Reliability
  • Polynomial chaos expansion