Computational analysis on B-series propeller performance in open water

Abstract

This paper presents a computational fluid dynamics (CFD) simulation to predict thrust coefficient (\({K_T}\)), torque coefficient (\({K_Q}\)) and efficiency (\({\eta }\)) in open-water condition, whilst a hydrodynamic description around the propeller’s blade underlying the rationale behind the results is explained. The effects of propeller revolution (RPM) and number of blades (Z) on the type of B-series have been appropriately taken into account within the range of advance ratio 0.1\({\le }\)J\({\le }\)1.0. The preliminary CFD results for the values of \({K_T}\), \({K_Q}\) and \({\eta }\) showed a good agreement with the open-water test results, in which the percentage of the average discrepancy error is adequately acceptable. In general, the results revealed that the increase of advance ratio was proportional with the values of \({K_T}\), \({K_Q}\) and \({\eta }\). Inversely, the propeller’s efficiency decreases particularly at J > 0.8. Regardless of the propeller’s RPM, the propeller with Z = 3 provides the highest efficiency. The current CFD result is very useful for acquiring an insight related to the fundamental understanding of the propeller properties in open-water condition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    V. Bertram, Practical Ship Hydrodynamics (Elsevier, Amsterdam, 2011)

    Google Scholar 

  2. 2.

    J. Carlton, Marine Propellers and Propulsion (Butterworth-Heinemann, Oxford, 2018)

    Google Scholar 

  3. 3.

    A. Rahman, M.R. Ullah, M.M. Karim, Marine propeller design method based on lifting line theory and lifting surface correction factors. Procedia Eng. 194, 174–181 (2017). https://doi.org/10.1016/j.proeng.2017.08.132

    Article  Google Scholar 

  4. 4.

    B. Epps, J. Ketcham, C. Chryssostomidis, Propeller blade stress estimates using lifting line theory, in GCMS’10 2010 Conference on Grand Challenges in Modeling and Simulation, pp. 442–447 (2010). https://dl.acm.org/https://doi.org/10.5555/2020619.2020679

  5. 5.

    D. Grassi, S. Brizzolara, Numerical analysis of propeller performance by lifting surface theory, in ICMRT’07 2nd International Conference on Marine Research and Transportation, (2007). https://pdfs.semanticscholar.org/41b6/0833791b96c367bc5b2d2c895045270f3e1d.pdf

  6. 6.

    S. Ekinci, A practical approach for design of marine propellers with systematic propeller series. Brodogradnja 62(2), 123–129 (2011)

    Google Scholar 

  7. 7.

    M. Husaini, Z. Samad, M.R. Arshad, Optimum Design of URRG_AUV Propeller Using PVL, in 2nd Technical Seminar on Underwater System Technology: Breaking New Frontiers, (2008). http://eprints.usm.my/13103/1/MV_Paper52_husaini.pdf

  8. 8.

    M. Husaini, Z. Samad, M.R. Arshad, Autonomous underwater vehicle propeller simulation using computational fluid dynamic, in Computational Fluid Dynamics Technologies and Applications. Tech. pp. 293–314, (2011). https://doi.org/10.5772/16297

  9. 9.

    K. Yeo, R. Beng, W.H. Sabatly, C.M. Hau, Ong, Effects of marine propeller performance and parameters using CFD method. J. Appl. Sci. 14(22), 3083–3088 (2014). https://doi.org/10.3923/jas.2014.3083.3088

    Article  Google Scholar 

  10. 10.

    D. Boucetta, O. Imine, Numerical simulation of the flow around marine propeller series. J. Phys. Sci. Appl. 6(3), 55–61 (2016). https://doi.org/10.17265/2159-5348/2016.03.008

    Article  Google Scholar 

  11. 11.

    M.M. Helal, T.M. Ahmed, A.A. Banawan, M.A. Kotb, Numerical prediction of the performance of marine propellers using computational fluid dynamics simulation with transition-sensitive turbulence model, in proceedings of the IMechE. J. Eng. Maritime Environ. 233(2), 515–527 (2018). https://doi.org/10.1177/1475090218763199

    Article  Google Scholar 

  12. 12.

    E. Guilmineau, G.B. Deng, A. Leroyer, P. Queutey, M. Visonneau, J. Wackers, Numerical simulations for the wake prediction of a marine propeller in straight-ahead flow and oblique flow. J. Fluid Eng. 140(2), (2018). https://doi.org/10.1115/1.4037984

    Article  MATH  Google Scholar 

  13. 13.

    R. Taheri, K. Mazaheri, Hydrodynamic optimization of marine propeller using gradient and non-gradient-based algorithms. Acta Polytech. Hungarica 10(3), 221–237 (2013). https://doi.org/10.12700/aph.10.03.2013.3.15

    Article  Google Scholar 

  14. 14.

    M.A. Elghorab, A.A.E.A. Aly, A.S. Elwetedy, M.A. Kotb, Experimental study of open water non-series marine propeller performance, in Presented at the World Academy of Science. Eng. Technol. 78, 924 (2013). https://doi.org/10.5281/zenodo.1075834

    Article  Google Scholar 

  15. 15.

    B.T. Roesler, M.L. Kawamura, E. Miller, M. Wilson, J. Brink-Roby, E. Clemmenson, M. Keller, B.P. Epps, Experimental performance of a novel trochoidal propeller. J. Ship Res. 60(1), 48–60 (2016). https://doi.org/10.5957/JOSR.60.1.150035

    Article  Google Scholar 

  16. 16.

    G. Staiano, A. Gloria, G. Ausanio, A. Lanzotti, C. Pensa, M. Martorelli, Experimental study on hydrodynamic performances of naval propellers to adopt new additive manufacturing processes. Int. J. Interact. Des. Manuf. 12(1), 1–14 (2018). https://doi.org/10.1007/s12008-016-0344-1

    Article  Google Scholar 

  17. 17.

    N. Garg, B.W. Pearce, P.A. Brandner, A.W. Phillips, J.R. Martins, Y.L. Young, Experimental investigation of a hydrofoil designed via hydrostructural optimization. J. Fluid Struct. 84, 243–262 (2019). https://doi.org/10.1016/j.jfluidstructs.2018.10.010

    Article  Google Scholar 

  18. 18.

    A. Fitriadhy, N.A. Adam, Heave and pitch motions performance of a monotricat ship in head-seas. Int. J. Automot. Mech. Eng. 14, 4243–4258 (2017). https://doi.org/10.15282/ijame.14.2.2017.10.0339

    Article  Google Scholar 

  19. 19.

    S. Prakash, D.R. Nath, A computational method for determination of open water performance of a marine propeller, Int. J. Comput. Appl. 58(12), (2012). https://doi.org/10.5120/9331-3636

    Article  Google Scholar 

  20. 20.

    M. Maghareh, H. Ghassemi, Propeller efficiency enhancement by the blade’s tip reformation. Am. J. Mech. Eng. 5(3), 70–75 (2017). https://doi.org/10.12691/ajme-5-3-1

    Article  Google Scholar 

  21. 21.

    International, N., FINE\({^{{\rm TM}}}\)/Turbo Theory Guide (2018)

  22. 22.

    S. Deck, P. Duveau, P. d’Espiney, P. Guillen, Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations. Aerosp. Sci. Technol. 6(3), 171–183 (2002). https://doi.org/10.1016/S1270-9638(02)01148-3

    Article  MATH  Google Scholar 

  23. 23.

    Č. Kostić, Review of the Spalart–Allmaras turbulence model and its modifications to three-dimensional supersonic configurations. Sci. Tech. Rev. 64(1), 43–49 (2015)

    Article  Google Scholar 

  24. 24.

    M.M. Hejlesen, J.T. Rasmussen, A. Larsen, J.H. Walther, Implementation of the Spalart-Allmaras turbulence model in the two-dimensional vortex-in-cell method, in Proceedings of 6th ECCOMAS Congress (2012). https://backend.orbit.dtu.dk/ws/portalfiles/portal/51202992/eccomas2012.pdf

  25. 25.

    E. Lorin, A.B.H. Ali, A. Soulaimani, An accurate positivity preserving scheme for the Spalart–Allmaras turbulence model. in Application to aerodynamics, in Presented at the 36th AIAA Fluid Dynamics Conference and Exhibit (2006). https://doi.org/10.2514/6.2006-3743

  26. 26.

    J. Martinez, P. Doerffer, O. Szulc, F. Tejero, Aerodynamic analysis of wind turbine rotor blades. Task Q. 19(2), 129–140 (2015)

    Google Scholar 

  27. 27.

    International, N., FINETM/Turbo v8. 7, user manual. In: NUMECA International Brussels, (2009). https://usermanual.wiki/Ensight/UsermanualFineturbo.65806684/view

  28. 28.

    I.M. Kamal, T.M.A.T.M. Yusof, A CFD RANS cavitation prediction for propellers. ARPN J. Eng. Appl. Sci. 12(4), 1248–1253 (2017)

    Google Scholar 

  29. 29.

    D. Folkner, Improvement in computational fluid dynamics through boundary verification and preconditioning. All Graduate Theses and Dissertations 1738, (2013). https://digitalcommons.usu.edu/etd/1738

  30. 30.

    ITTC, Uncertainty analysis in CFD verification and validation, methodology and procedures, ITTC-Quality Manual, 7.5-03-01-01. in Proceedings of the International Towing Tank Conference, (2017). https://www.ittc.info/media/8153/75-03-01-01.pdf

  31. 31.

    K.B. Yeo, W.Y. Hau, Fundamentals of marine propeller analysis. J. Appl. Sci. 14(10), 1078–1082 (2014). https://doi.org/10.3923/jas.2014.1078.1082

    Article  Google Scholar 

  32. 32.

    K.B. Yeo, W.H. Choong, W.Y. Hau, Prediction of propeller blade stress distribution through FEA. J. Appl. Sci. 14(22), 3046–3054 (2014). https://doi.org/10.3923/jas.2014.3046.3054

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank P.T. Terafulk Megantara Design for providing the propeller model and its open-water test results.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Fitriadhy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adam, N.A., Fitriadhy, A., Quah, C.J. et al. Computational analysis on B-series propeller performance in open water. Mar Syst Ocean Technol 15, 299–307 (2020). https://doi.org/10.1007/s40868-020-00087-z

Download citation

Keywords

  • Torque and Thrust
  • Efficiency
  • Propeller
  • RPM
  • Blade number
  • CFD