American Friends Service Committee Working Party. (1971). Struggle for justice: a report on crime and punishment in America. New York: Hill and Wang.
Google Scholar
Andruff, H., Carraro, N., Thompson, A., & Gaudreau, P. (2009). Latent class growth modelling: a tutorial. Tutorial in Quantitative Methods for Psychology, 5, 11–24.
Google Scholar
Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics, 32, 159–188.
Article
Google Scholar
Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338–363.
Article
Google Scholar
Bauer, D. J., & Curran, P. J. (2003). Overextraction of latent trajectory classes: much ado about nothing? Reply to Rindskopf (2003), Muthén (2003), and Cudeck and Henly (2003). Psychological Bulletin, 8, 384–393.
Google Scholar
Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: potential problems and promising opportunities. Psychological Methods, 9, 3–29.
Article
Google Scholar
Becker, H. (1953). Becoming a marijuana user. American Journal of Sociology, 59, 235–242.
Article
Google Scholar
Becker, P., & Wetzell, R. F. (Eds.). (2006). Criminals and their scientists: the history of criminology in international perspective. New York: Cambridge University Press.
Google Scholar
Beirne, P. (1993). Inventing criminology: essays on the rise of homo criminalis. Albany: State University Press of New York.
Google Scholar
Beirne, P. (1994). The origins and growth of criminology: essays on intellectual history, 1760–1945. Brookfield: Dartmouth.
Google Scholar
Benaglia, T., Hunter, D. R., Chauveau, D., & Young, D. S. (2009). Mixtools: an R package for analyzing finite mixture models. Journal of Statistical Software, 32, 1–29.
Article
Google Scholar
Berk, R. (2010). What you can and can’at properly do with regression. Journal of Quantitative Criminology, 26, 481–487.
Article
Google Scholar
Blokland, A. A. J., & Neiuwbeerta, P. (2005). The effects of life circumstances on longitudinal trajectories of offending. Criminology, 43, 1203–1240.
Article
Google Scholar
Blumstein, A., Cohen, J., Roth, J., & Visher, C. A. (Eds.). (1986). Criminal careers and “career criminals. Washington, DC: National Academy Press.
Google Scholar
Blumstein, A., & Rosenfeld, R. (1998). Explaining recent trends in U.S. homicide rates. Journal of Criminal Law and Criminology, 8, 1175–1216.
Article
Google Scholar
Blumstein, A., & Moitra, S. (1980). The identification of “career criminals” from “chronic offenders” in a cohort. Law Policy Quarterly, 2, 321–334.
Article
Google Scholar
Brame, R., Bushway, S., & Paternoster, R. (1999). On the use of panel research designs and random effects models to investigate static and dynamic theories of criminal offending. Criminology, 37, 599–641.
Article
Google Scholar
Brame, R., Nagin, D. S., & Wasserman, L. (2006). Exploring some analytical characteristics of finite mixture models. Journal of Quantitative Criminology, 22, 31–59.
Article
Google Scholar
Brame, R., Paternoster, R., & Piquero, A. R. (2012). Thoughts on the analysis of group-based developmental trajectories in criminology. Justice Quarterly, 29, 469–490.
Article
Google Scholar
Bushway, S., Brame, R., & Paternoster, R. (1999). Assessing stability and change in criminal offending: a comparison of random effects, semi-parametric, and fixed effect modeling strategies. Journal of Quantitative Criminology, 15, 23–61.
Article
Google Scholar
Bushway, S., Sweeten, G., & Nieuwbeerta, P. (2009). Measuring long term individual trajectories of offending using multiple methods. Journal of Quantitative Criminology, 25, 259–286.
Article
Google Scholar
Butler, S. M., & Louis, T. A. (1992). Random effects models with non-parametric priors. Statistics in Medicine, 11, 1981–2000.
Article
Google Scholar
Chang, I, (2005). Bayesian Inference on Mixture Models and their Application. Ph.D. Dissertation, Texas A & M University. Available at http://repository.tamu.edu/bitstream/handle/1969.1/3990/etc.-tamu-2005A-STAT-Chan.pdf?sequence=1.
Cheng, M.-Y., & Hall, P. (1998). Calibrating the excess mass and dip tests of modality. Journal of the Royal Statistical Society, Series B, 60, 579–589.
Article
Google Scholar
Clogg, C. C. (1995). Latent class models. In G. Arminger, C. C. Clogg, & M. R. Yarrow (Eds.), Handbook of statistical modeling in the social and behavioral sciences (pp. 311–359). New York: Plenum.
Chapter
Google Scholar
Cohen, P., Chen, H., Hamigami, F., Gordon, K., & McCardle, J. J. (2000). Multilevel analyses for predicting sequence effects of financial and employment problems on the probability of arrest. Journal of Quantitative Criminology, 16, 223–235.
Article
Google Scholar
D’Unger, A. V., Land, K. C., McCall, P. L., & Nagin, D. S. (1998). How many latent classes of delinquent/criminal careers? Results from mixed Poisson regression analyses of the London, Philadelphia, and Racine cohort studies. American Journal of Sociology, 103, 1593–1630.
Article
Google Scholar
Eggleston, E. P., Laub, J. H., & Sampson, R. J. (2004). Methodological sensitivities to latentclass analysis of long-term criminological trajectories. Journal of Quantitative Criminology, 20, 1–26.
Article
Google Scholar
Erosheva, E. A., Matsueda, R. L., & Telesca, D. (2014). Breaking bad: two decades of life-course data analysis in criminology, developmental psychology, and beyond. Annual Review of Statistics and its Application, 1, 301–332.
Ezell, M. E., & Cohen, L. E. (2005). Desisting from crime: continuity and change in long-term crime patterns of serious chronic offenders. New York: Oxford University Press.
Google Scholar
Farrington, D. P. (1986). Age and crime. In M. Tonry & N. Morris (Eds.), Crime and justice: an annual review of research (pp. 189–250). Chicago: University of Chicago Press.
Google Scholar
Farrington, D. P. (1995). The development of offending and antisocial behaviour from childhood: Key findings from the Cambridge Study in delinquent development. Journal of Child Psychology and Psychiatry, 36, 929–964.
Feldman, B. J., Masyn, K. E., & Conger, R. D. (2009). New approaches to studying problem behavior: a comparison of methods for modeling longitudinal, categorical adolescent drinking data. Developmental Psychology, 45, 652–676.
Article
Google Scholar
Francis, B., Soothill, K., & Fligelstein, R. (2004). Patterns of offending behavior: a new approach to typologies of crime. European Journal of Criminology, 1, 47–80.
Article
Google Scholar
Gibson, M. (2002). Born to crime: Cesare Lombroso and the origins of biological criminology. Westport: Praeger.
Google Scholar
Glaeser, E. L., & Sunstein, C. R. (2009). Extremism and social learning. Journal of Legal Analysis, 1, 263–324.
Article
Google Scholar
Glueck, S., & Glueck, E. T. (1930). 500 criminal careers. New York: Knopf.
Google Scholar
Glueck, S., & Glueck, E. T. (1937). Later criminal careers. New York: Commonwealth Fund.
Google Scholar
Gottfredson, M. R., & Hirschi, T. (1990). A general theory of crime. Stanford: Stanford University Press.
Google Scholar
Greenberg, D. F. (1977). Delinquency and the age structure of society. Contemporary Crisis, 1, 189–224.
Article
Google Scholar
Greenberg, D. F. (1985). Age, crime, and social explanation. American Journal of Sociology, 91, 859–866.
Article
Google Scholar
Greenberg, D. F. (1991). Modeling criminal careers. Criminology, 29, 17–46.
Article
Google Scholar
Greenberg, D. F. (2008). Age, sex, and racial distributions of crime. In E. Goode (Ed.), Out of control: assessing the general theory of crime (pp. 38–48). Stanford: Stanford University Press.
Google Scholar
Greenberg, D. F., & Larkin, N. (1985). Age-cohort analysis of arrest rates. Journal of Quantitative Criminology, 1, 227–241.
Article
Google Scholar
Greenberg, D. F., & Phillips, J. A. (2012). Hierarchical linear modeling of growth curve trajectories using HLM. In G. David Garson (Ed.), Hierarchical linear modeling: guide and applications (pp. 219–247). Thousand Oaks: Sage.
Google Scholar
Harcourt, B. (2006). Against prediction: profiling, policing, and punishing in an actuarial age. Chicago: University of Chicago Press.
Book
Google Scholar
Hartigan, J. A. (1985). Algorithm AS 217: computation of the dip statistic to test for unimodality. Applied Statistics, 34, 320–325.
Article
Google Scholar
Hartigan, J. A., & Hartigan, P. M. (1985). The dip test of unimodality. Annals of Statistics, 13, 70–84.
Article
Google Scholar
Henderson, D. J. (2010). A test for multimodality of regression derivatives with application to nonparametric growth regressions. Journal of Applied Econometrics, 25, 458–2010.
Article
Google Scholar
Hilbe, J. (2007). Negative binomial regression. New York: Cambridge University Press.
Book
Google Scholar
Hirschi, T., & Gottfedson, M. R. (1983). Age and the explanation of crime. American Journal of Sociology, 89, 552–584.
Article
Google Scholar
Hirschi, T., & Gottfredson, M. R. (1985). Age and crime, logic and scholarship: comment on Greenberg. American Journal of Sociology, 91, 22–27.
Article
Google Scholar
Horney, J., Osgood, D. W., & Marshall, I. H. (1995). Criminal careers in the short-term: intra-individual variability in crime and its relation to local life circumstances. American Sociological Review, 60, 655–673.
Article
Google Scholar
Jennings, W. G., & Reingle, J. M. (2012). On the number and shape of developmental/life-course violence, aggression, and delinquency trajectories: a state-of-the-art review. Journal of Criminal Justice, 40, 472–489.
Article
Google Scholar
Jones, B., Nagin, D. S., & Roeder, K. (2001). A SAS Procedure based on mixture models for estimating developmental trajectories. Sociological Methods & Research, 29, 374–393.
Article
Google Scholar
Kass, R. E., & Rafferty, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.
Article
Google Scholar
Kass, R. E., & Wasserman, R. E. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association, 90, 928–934.
Article
Google Scholar
Kreuter, F., & Muthén, B. (2008). Analyzing criminal trajectory profiles: bridging \multilevel and group-based approaches using growth mixture modeling. Journal of Quantitative Criminology, 24, 1–31.
Article
Google Scholar
Laub, J. H., & Sampson, R. J. (2003). Shared beginnings, divergent lives. Cambridge: Harvard University Press.
Google Scholar
Laub, J. H., Nagin, D. S., & Sampson, R. J. (1998). Trajectories of change in criminal offending: good marriages and the desistance process. American Sociological Review, 63, 225–238.
Article
Google Scholar
Lee, K.-J., Chen, R.-B., & Wu, Y. N. (2016). Bayesian variable selection for finite mixture model of linear regressions. Computational Statistics and Data Analysis, 95, 1–16.
Article
Google Scholar
Leisch, F. (2004). FlexMix: a general framework for finite mixture models and latent classregression in R. Journal of Statistical Software, 11, 1–18.
Article
Google Scholar
Liu, M. (2011). Using latent profile models and unstructured growth mixture models to assess the number of latent classes in growth mixture modeling. Ph.D. Dissertation, University of Maryland.
Lynch, K. G., Nagin, D. S., & Roeder, K. (1999). Modeling uncertainty in latent class membership: a case study in criminology. Journal of the American Statistical Association, 94, 766–776.
Article
Google Scholar
Macmillan, R. (2008). Review. Contemporary Sociology, 37, 159–160.
Article
Google Scholar
McCall, P. L., Land, K. C., & Parker, K. F. (2011). Heterogeneity in the rise and decline of city-level homicide rates, 1976–2005: a latent trajectory analysis. Social Science Research, 40, 363–378.
Article
Google Scholar
McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2008). Generalized, linear, and mixed models. Hoboken: Wiley.
Google Scholar
McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley.
Book
Google Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: homophily in social networks. Annual Review of Sociology, 27, 415–444.
Article
Google Scholar
Meehl, P. E. (1999). Clarifications about taxometric method. Applied and Preventive Psychology, 8, 165–174.
Article
Google Scholar
Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463–469.
Article
Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2007). Mplus User’s Guide. 5h and Muthén.
Muthén, L. K., & Asparouhov, T. (2008). Growth mixture modeling: analysis with non-gaussian random effects. In M. G. Verbeke & G. Molenberg (Eds.), Longitudinal data analysis (pp. 147–165). Boca Raton: Chapman & Hall/CRC Press.
Google Scholar
Nagin, D. S. (1999). Analyzing developmental trajectories: a semiparametric, group-based approach. Psychological Methods, 4, 139–157.
Article
Google Scholar
Nagin, D. S. (2005). Group-based modeling of development. Cambridge: Harvard University Press.
Book
Google Scholar
Nagin, D. S. (2007). Overview of a semi-parametric, group-based approach for analyzing trajectories of development. In D. J. Flannery, A. T. Vazsonyi, & I. D. Waldman (Eds.), Cambridge handbook of violent behavior and aggression (pp. 740–749). New York: Cambridge University Press.
Chapter
Google Scholar
Nagin, D. S. (2010). Group-based trajectory modeling: an overview. In A. R. Piquero & D. Weisburd (Eds.), Handbook of quantitative criminology (pp. 53–68). New York: Springer.
Chapter
Google Scholar
Nagin, D. S., & Land, K. C. (1993). Age, criminal careers, and population heterogeneity: specification and estimation of a nonparametric, mixed Poisson model. Criminology, 31, 327–362.
Article
Google Scholar
Nagin, D. S., & Odgers, C. L. (2010). Group-based trajectory modeling (nearly) two decades later. Journal of Quantitative Criminology, 26, 445–453.
Article
Google Scholar
Nagin, D. S., & Paternoster, R. (1991). On the relationship of past to future participation in crime. Criminology, 29, 163–189.
Article
Google Scholar
Nagin, D. S., & Paternoster, R. (1992). The onset and persistence of offending. Criminology, 30, 501–523.
Article
Google Scholar
Nagin, D. S., & Tremblay, R. E. (2005). Developmental trajectory groups: fact or a useful statistical fiction? Criminology, 43, 873–904.
Article
Google Scholar
Nagin, D. S., & Tremblay, R. E. (2005). From seduction to passion: a response to Sampson and Laub. Criminology, 43, 915–918.
Article
Google Scholar
Nagin, D. S., & Tremblay, R. E. (2005). What has been learned from group-based trajectory modeling? Examples from physical aggression and other problem behaviors. The Annals of the American Academy of Political and Social Science, 602, 145–154.
Article
Google Scholar
Nagin, D. S., & Tremblay, R. E. (2005). Further reflections on modeling and analyzing developmental trajectories: a response to Maughan and Raudenbush. The Annals of the American Academy of Political and Social Science, 602, 145–154.
Article
Google Scholar
Neuhaus, J. M., & McCulloch, C. E. (2008). The consequences of misspecifying the random effects distribution when fitting generalized linear mixed models. Paper presented to the 2008 meeting the Stata User’s Group, Washington, DC. Available at www.stata.com/meeting/fnasug08/neuhaus_Stata2008.talk.pdf. Last accessed 14 July 2015.
Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of latent classes in class analysis and growth mixture modeling: a Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.
Article
Google Scholar
Patterson, G. R., Debaryshe, B. D., & Ramsey, E. (1989). A developmental perspective on antisocial-behavior. American Psychologist 44, 329–335.
Patterson, G. R., Forgatch, M. S., Yoerger, K. L., & Stoolmiller, M. (1998). Variables that initiate and maintain an early-onset trajectory for juvenile offending. Development and Psychopathology 10, 531–547.
Paternoster, R., Bushway, S., Brame, R., & Apel, R. (2003). The effect of teenage employment on delinquency and problem behaviors. Social Forces, 82, 297–335.
Article
Google Scholar
Petras, H., & Masyn, P. (2010). General growth mixture analysis with antecedents and consequences of change. In H. Petras & D. Weisburd (Eds.), Handbook of quantitative criminology. New York: Springer.
Google Scholar
Phenix, D. (2010). Criminal careers: the distribution of change. Ph.D. Dissertation, New York University.
Phillips, J., & Greenberg, D. F. (2008). A comparison of methods for analyzing criminological panel data. Journal of Quantitative Criminology, 24, 51–72.
Article
Google Scholar
Piquero, A. R. (2008). Taking stock of developmental trajectories of criminal activity over the life course. In A. M. Liberman (Ed.), The long view of crime: a synthesis of longitudinal research (pp. 23–78). New York: Springer.
Chapter
Google Scholar
Piquero, A. R., Farrington, D. P., & Blumstein, A. (2007). Key issues in criminal career research: new analyses of the Cambridge study in delinquent development. New York: Cambridge University Press.
Book
Google Scholar
Rafter, N. H. (1997). Creating born criminals. Urbana: University of Illinois Press.
Google Scholar
Raudenbush, S. W. (2005). How do we study what happens next? The Annals of the American Academy of Political and Social Science, 602, 131–144.
Article
Google Scholar
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: applications and data analysis methods (2nd ed.). Thousand Oaks: Sage.
Google Scholar
Roeder, K., Lynch, K. G., & Nagin, D. S. (1999). Modeling uncertainty in latent class membership: a case study in criminology. Journal of the American Statistical Association, 94, 766–776.
Article
Google Scholar
Rowe, D. C., Wayne Osgood, D., & Alan Nicewander, W. (1990). A latent trait approach to unifying criminal careers. Criminology, 28, 237–270.
Article
Google Scholar
Sampson, R. J., & Laub, J. H. (2003). Life-course desisters? Trajectories of crime among the delinquent boys followed to age 70. Criminology, 41, 301–339.
Article
Google Scholar
Sampson, R. J., & Laub, J. H. (2005). Seductions of method: rejoinder to Nagin and Tremblay’s ‘developmental trajectory groups: fact or fiction?’. Criminology, 43, 905–913.
Article
Google Scholar
Schork, N. J., & Schork, M. A. (1988). Skewness and mixtures of normal distributions.
Shaw, C. R. (1930). The jack-rollr, a delinquent boy’s own story. Chicago: University of Chicago Press.
Shaw, C. R. (1931). The natural history of a delinquent career. Chicago: University of Chicago Press.
Skardhamar, T. (2009). Reconsidering the theory on adolescent-limited and life-course persistent anti-social behavior. British Journal of Criminology, 49, 863–878.
Article
Google Scholar
Skardhamer, T. (2010). Distinguishing facts and artifacts in group-based modeling. Criminology, 48, 295–320.
Article
Google Scholar
Steele, R. (2015). Model selection for multilevel models. In M. A. Scott, J. S. Simonoff, & B. D. Marx (Eds.), The SAGE handbook of multilevel modeling: model selection for multilevel models (pp. 109–127). Thousand Oaks: Sage.
Google Scholar
Steffensmeier, D. S., Allen, E. A., Harer, M. D., & Streifel, C. (1989). Age and the distribution of crime. American Journal of Sociology, 94, 803–831.
Article
Google Scholar
Sterba, S. K., Baldasaro, R. E., & Bauer, D. J. (2012). Factors affecting the adequacy and preferability of semiparametric group-based approximations of continuous growth trajectories. Multivariate Behavioral Research, 47, 590–634.
Article
Google Scholar
Sunstein, C. (2002). The law of group polarization. Journal of Political Philosophy, 10, 175–195.
Article
Google Scholar
Tewksbury, R., & Jennings, W. G. (2010). Assessing the impact of sex offender registration and community notification on sex-offending trajectories. Criminal Justice and Behavior, 37, 570–582.
Article
Google Scholar
Titterington, D. M., Smith, A. F. M., & Makow, U. E. (1985). Statistical analysis of finite mixture distributions. New York: Wiley.
Google Scholar
Tong, X., & Zhanag, Z. (2012). Diagnostics of robust growth modeling using Student’s t distribution. Multivariate Behavioral Research, 47, 493–518.
Article
Google Scholar
Uggen, C., & Thompson, M. (2003). The socioeconomic determination of ill-gotten gains: within-person changes in drug use and illegal earnings. American Journal of Sociology, 109, 146–185.
Article
Google Scholar
Verbeke, G., & Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association, 91, 217–221.
Article
Google Scholar
Verbeke, G., & Lessafre, E. (1997). The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Computational Statistics and Data Analysis, 232, 541–556.
Article
Google Scholar
Vermunt, J. K., & Magidson, J. (2000). Latent gold user’s guide. Belmont: Statistical Innovations, Inc.
Google Scholar
von Hirsch, A. (1976). Doing justice: the choice of punishments. New York: Hill and Wang.
Google Scholar
Wang, M., & Bodner, T. E. (2007). Growth mixtue modeling: identifying and predicting unobserved subpopulations with longitudinal data. Organizational Research Methods, 10, 635–656.
Article
Google Scholar
Warren, J. R., Luo, L., Halpern-Manners, A., Raymo, J. M., & Palloni, A. (2015). Do different methods for modeling age-graded trajectories yield consistent and valid results? American Journal of Sociology, 20, 1809–1856.
Article
Google Scholar
Weisburd, D., Bushway, S., Lum, C., & Yang, S.-M. (2004). Trajectories of crime at places: a longitudinal study of street segments in the City of Seattle. Criminology, 42, 283–322.
Article
Google Scholar
Weisburd, D., Cave, B., & Piquero, A. (2015). How do criminologists interpret statistical explanation of crime?: a review of quantitative modeling in published studies. In A. Piquero & C. Wellford (Eds.), Handbook of Criminological Theory. New York: Springer Verlaag.
Wolfgang, M. E., Figlio, R. M., & Sellin, T. (1971). Delinquency in a birth cohort. Chicago: University of Chicago Press.