Skip to main content
Log in

New families of global cubic centers

  • Stability and Bifurcation - Dedicated to Jorge Sotomayor
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

An equilibrium point p of a differential system in the plane \(\mathbb {R}^2\) is a center if there exists a neighbourhood U of p such that \(U\setminus \{p\}\) is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane \(\mathbb {R}^2\) is the problem of distinguishing between a focus and a center. A global center is a center p such that \(\mathbb {R}^2 \setminus \{p\}\) is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in \(\mathbb {R}^2\) is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems \(\begin{array}{*{20}l} {\dot{x} = y - Cx^{2} + \left( {B + 2D} \right)xy + Cy^{2} + Px^{3} + Gx^{2} y - \left( {H + 3P} \right)xy^{2} + Ky^{3} ,} \hfill \\ {\dot{y} = - x + Dx^{2} + \left( {E + 2C} \right)xy - Dy^{2} - Kx^{3} - \left( {H + 3P} \right)x^{2} y - Gxy^{2} + Py^{3} .} \hfill \\ \end{array}\). Here we characterize when the origin of this family of differential system is a global center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Alvarez, M.J., Ferragut, A., Jarque, X.: A survey on the blow up technique. Int. J. Bifurc. Chaos 21, 3103–3118 (2011)

    Article  MathSciNet  Google Scholar 

  2. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maıer, A.G.: Qualitative Theory of Second-order Dynamic Systems. Halsted Press, New York-Toronto (1973)

    Google Scholar 

  3. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maıer, A.G.: Israel Program for Scientific Translations. John Wiley & Sons, Jerusalem-London (1973)

    Google Scholar 

  4. Artés, J.C., Dumortier, F., Llibre, J.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)

    Google Scholar 

  5. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Mat. Sbornik 30, 181–196 (1952)

    MathSciNet  Google Scholar 

  6. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Amer. Math. Soc. Transl. 100, 1–19 (1984)

    Google Scholar 

  7. Buzzi, C., Llibre, J., Santana, P.: Phase portraits of \(\left(2, 0\right)\) reversible vector fields with symmetrical singularities. J. Math. Anal. Appl. 503, 125324, 21 pp. (2021)

    Article  MathSciNet  Google Scholar 

  8. Conti, R.: Uniformly isochronous centers of polynomial systems in \(\mathbb{R}^2\). Lect. Notes Pure Appl. Math. 152, 21–31 (1994)

    Google Scholar 

  9. Conti, R.: Centers of planar polynomial systems: a review. Le Mathematiche LIII, 207–240 (1998)

    MathSciNet  Google Scholar 

  10. Dulac, H.: Détermination et Integration d’une Certaine Classe d’Equations Différentielle ayant par Point Singulier un Centre. Bull. Sci. Math. Sér. 32(2), 230–252 (1908)

    Google Scholar 

  11. Galeotti, M., Villarini, M.: Some properties of planar polynomial systems of even degree. Ann. Math. Pura. Appl. 161(1), 299–313 (1992)

    Article  MathSciNet  Google Scholar 

  12. García-Saldaña, J., Llibre, J., Valls, C.: Linear type global centers of linear systems with cubic homogeneous nonlinearities. Rendiconti del Circolo Matematico di Palermo Series 2, 69(3), 771–785 (2020)

    Article  MathSciNet  Google Scholar 

  13. He, H., Xiao, D.: On the Global Center of Planar Polynomial Differential Systems and the Related Problems. J. Appl. Anal. Comput. 12(3), 1141–1157 (2022)

    MathSciNet  Google Scholar 

  14. Huygens, C.: Horologium oscillatorium sive de motu pendularium, theory and design of the pendulum clock, dedicated to Louis XIV of France (1673)

  15. Kapteyn, W.: New investigations on the midpoints of integrals of differential equations of the first degree. Nederl. Akad. Wetensch. Verslag Afd. Natuurk. 19, 1446–1457 (1911)

    Google Scholar 

  16. Kapteyn, W.: New investigations on the midpoints of integrals of differential equations of the first degree. Nederl. Akad. Wetensch. Verslag Afd. Natuurk. 20, 1354–1365 (1912)

    Google Scholar 

  17. Llibre, J., Valls, C.: Polynomial differential systems with even degree have no global centers. J. Math. Anal. Appl. 503(1), 125281 (2021)

    Article  MathSciNet  Google Scholar 

  18. Llibre, J., Valls, C.: Reversible global centres with quintic homogeneous nonlinearities. Dyn. Syst. 30, 135–148 (2023)

    MathSciNet  Google Scholar 

  19. Lloyd, N.G., Pearson, J.M., Romanovsky, V.A.: Computing integrability conditions for a cubic differential system. Comput. Math. Applic. 32(10), 99–107 (1996)

    Article  MathSciNet  Google Scholar 

  20. Milham, W.I.: Time and Timekeepers. MacMillan, New York (1945)

    Google Scholar 

  21. Poincaré, H.: Mémoire sur les Courbes Définies par les Équations Différentielles. J. Anal. Math. 37, 375–422 (1881)

    Google Scholar 

  22. Poincaré, H.: Oeuvres de Henri Poincaré, vol. I, pp. 3–84. Gauthier-Villars, Paris (1951)

    Google Scholar 

Download references

Funding

This article was possible thanks to the scholarship granted from the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), in the scope of the Program CAPES-PRINT, process number 88887.802675/2023-00. The second author is partially supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00, the H2020 European Research Council grant MSCA-RISE-2017–777911, AGAUR (Generalitat de Catalunya) grant 2021SGR00113, and by the Acadèmia de Ciències i Arts de Barcelona.

Author information

Authors and Affiliations

Authors

Contributions

The two authors have worked equally in this paper.

Corresponding author

Correspondence to Leonardo P. Serantola.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflit of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Marco Antonio Teixeira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llibre, J., Serantola, L.P. New families of global cubic centers. São Paulo J. Math. Sci. (2024). https://doi.org/10.1007/s40863-024-00411-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40863-024-00411-0

Keywords

Mathematics Subject Classification

Navigation