Skip to main content
Log in

Lecture notes on quivers with superpotential and their representations

  • Special Section: Geometry in Algebra and Algebra in Geometry
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript


These lecture notes are based on a mini-course presented at the fifth version of the Workshop Geometry in Algebra and Algebra in Geometry held in Medellín–Colombia in October 2019. The aim is to provide the background necessary to understand the theory of quivers with relations given by superpotentials. A heavy emphasis is placed throughout on examples to illustrate the applicability of the theory. The motivations for the lectures come from several sources: superpotentials in physics, Calabi–Yau algebras, and noncommutative resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Alim, M., Cecotti, S., Córdova, C., Espahbodi, S., Rastogi, A., Vafa, C.: \({\cal{N}}= 2\) quantum field theories and their BPS quivers. Adv. Theor. Math. Phys. 18(1), 27–127 (2014)

    Article  MathSciNet  Google Scholar 

  2. Beasley, C., Greene, B.R., Lazaroiu, C., Plesser, M.: D3-branes on partial resolutions of abelian quotient singularities of Calabi–Yau threefolds. Nucl. Phys. B 566(3), 599–641 (2000)

    Article  MathSciNet  Google Scholar 

  3. Berenstein, D., Leigh, R.G.: Resolution of stringy singularities by non-commutative algebras. J. High Energy Phys. 2001(06), 030 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bridgeland, T., King, A., Reid, M.: The mckay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001)

    Article  MathSciNet  Google Scholar 

  5. Craw, A.: Quiver representations in toric geometry. arXiv:0807.2191

  6. Craw, A., Maclagan, D., Thomas, R.R.: Moduli of Mckay quiver representations ii: Gröbner basis techniques. J. Algebra 316(2), 514–535 (2007)

    Article  MathSciNet  Google Scholar 

  7. Crawley-Boevey, W., Etingof, P., Ginzburg, V.: Noncommutative geometry and quiver algebras. Adv. Math. 209(1), 274–336 (2007)

    Article  MathSciNet  Google Scholar 

  8. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: Mutations. Sel. Math. New Ser. 14(1), 59–119 (2008)

    Article  MathSciNet  Google Scholar 

  9. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: applications to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010)

    Article  MathSciNet  Google Scholar 

  10. Donovan, W., Wemyss, M.: Noncommutative deformations and flops. Duke Math. J. 165(8), 1397–1474 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ginzburg, V.: Calabi-Yau algebras. arXiv:0612139

  12. Hanany, A., Kennaway, K.D.: Dimer models and toric diagrams. arXiv:0503149

  13. Hanany, A., Vegh, D.: Quivers, tilings, branes and rhombi. J. High Energy Phys 2007(10), 029 (2007)

    Article  MathSciNet  Google Scholar 

  14. King, A.D.: Moduli of representations of finite dimensional algebras. Quart. J. Math. 45(4), 515–530 (1994)

    Article  MathSciNet  Google Scholar 

  15. Klebanov, I.R., Witten, E.: Superconformal field theory on threebranes at a Calabi–Yau singularity. Nucl. Phys. B 536(1–2), 199–218 (1998)

    Article  MathSciNet  Google Scholar 

  16. Le Bruyn, L.: Non-commutative algebraic geometry and commutative desingularizations. Noncommutative Algebra Geom. 243, 203–252 (2005)

    Article  MathSciNet  Google Scholar 

  17. Morrison, A.: Motivic invariants of quivers via dimensional reduction. Sel. Math. New Ser. 18(4), 779–797 (2012)

    Article  MathSciNet  Google Scholar 

  18. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, vol. 34. Springer, Berlin (1994)

    Book  Google Scholar 

  19. Schiffler, R.: Quiver Representations, vol. 1. Springer, Berlin (2014)

    MATH  Google Scholar 

  20. Segal, E.: The \(A_{\infty }\) deformation theory of a point and the derived categories of local Calabi–Yaus. J. Algebra 320(8), 3232–3268 (2008)

    Article  MathSciNet  Google Scholar 

  21. Szendrői, B.: Non-commutative Donaldson–Thomas invariants and the conifold. Geom. Topol. 12(2), 1171–1202 (2008)

    Article  MathSciNet  Google Scholar 

  22. Van den Bergh, M.: Non-commutative crepant resolutions. In: Laudal, O.A., Piene, R. (eds.) The Legacy of Niels Henrik Abel, pp. 749–770. Springer, Berlin (2004)

    Chapter  Google Scholar 

  23. Van den Bergh, M.: Calabi–Yau algebras and superpotentials. Sel. Math. New Ser. 21(2), 555–603 (2015)

    Article  MathSciNet  Google Scholar 

  24. Wemyss, M.: Lectures on noncommutative resolutions. arXiv:1210.2564

  25. Wess, J., Bagger, J.: Supersymmetry and Supergravity. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

Download references


A.Q.V. is cordially thankful to the Organizing Committee of GAAG-V for the opportunity to present these results to the audience and providing him the conditions that made possible the writing of these lecture notes in a proper way. F.V. is thankful for the partial support given by CODI, Universidad de Antioquia, Project 2017-15756 Stable Limit Linear Series on Curves. F.V. is also grateful for the support given by the Network NT8 for Geometry and Physics from the Office of External Activities, ICTP, which allowed him to attend the event GAAG-V. Both, the event GAAG-V and the writing, were partially supported by CODI, Universidad de Antioquia, Project 2017-15756 Stable Limit Linear Series on Curves.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexander Quintero Vélez.

Additional information

Communicated by Pedro Hernandez Rizzo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintero Vélez, A., Valencia, F. Lecture notes on quivers with superpotential and their representations. São Paulo J. Math. Sci. 15, 720–743 (2021).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: