Skip to main content
Log in

The Kempf–Ness Theorem and invariant theory for real reductive representations

  • Special Section: An Homage to Manfredo P. do Carmo
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

This paper does not contain any new result. We give new proofs of the Kempf–Ness Theorem and Hilbert–Mumford criterion for real reductive representations avoiding any algebraic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biliotti, L., Ghigi, A., Heinzner, P.: Polar orbitopes. Commun. Anal. Geom. 21(3), 579–606 (2013)

    Article  MathSciNet  Google Scholar 

  2. Biliotti, L., Ghigi, A., Heinzner, P.: Invariant convex sets in polar representations. Isr. J. Math. 213, 423–441 (2016)

    Article  MathSciNet  Google Scholar 

  3. Biliotti, L., Ghigi, A.: Stability of measures on Kähler manifolds. Adv. Math. 317, 1108–1150 (2017)

    Article  Google Scholar 

  4. Biliotti, L., Zedda, M.: Stability with respect to actions of real reductive Lie groups. Ann. Mat. Pura Appl. (4) 196(6), 2185–2211 (2017)

    Article  MathSciNet  Google Scholar 

  5. Biliotti, L., Ghigi, A.: Remarks on the abelian convexity theorem. Proc. Am. Math. Soc. 146(12), 5409–5419 (2018)

    Article  MathSciNet  Google Scholar 

  6. Biliotti, L., Raffero, A.: Convexity theorems for the gradient map for the gradient map on probability measures. Complex Manifolds 5, 133–145 (2018)

    Article  MathSciNet  Google Scholar 

  7. Biliotti, L.: Convexity properties of gradient maps associated to real reductive representations. arXiv preprint arXiv:1905.01915

  8. Birkes, D.: Orbits of linear algebraic groups. Ann. Math. 2(93), 459–475 (1971)

    Article  MathSciNet  Google Scholar 

  9. Böhm, C., Lafuente R.A.: Real geometric invariant theory. arXiv preprint arXiv:1701.00643

  10. Borel, A.: Harish-Chandra, Arithmetic subgroups of algebraic groups. Ann. Math. 2(75), 485–535 (1962)

    Article  Google Scholar 

  11. Borel, A.: Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 126, 2nd edn, p. 288. Springer, New York (1991)

    Book  Google Scholar 

  12. Borel, A., Tits, J.: Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27, 55–150 (1965)

    Article  Google Scholar 

  13. Borel, A.: Lie groups and linear algebraic groups I. Complex and Real groups. In: Ji, L. (ed.) AMS IP Studies in Advanced Mathematics, vol. 37, pp. 1–49. American Mathematical Society, Providence (2006)

  14. Borel, A., Ji, L.: Compactifications of symmetric and locally symmetric spaces. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA, pp. xvi+479 (2006)

  15. Eberlein, P.: Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1996)

    MATH  Google Scholar 

  16. Eberlein, P., Jablonski, M.: Closed orbit of semi-simple Lie group actions and the real Hilbert–Munford functions. In: New Developments in Lie Theory and Geometry, Contemporary Mathematics, pp. 283–321. American Mathematical Society, Providence (2009)

  17. Harish-Chandra, : Harmonic analysis on real reductive groups I. The theory of the constant term. J. Funct. Anal. 19, 104–204 (1975)

    Article  MathSciNet  Google Scholar 

  18. Heinzner, P., Stötzel, H.: Semistable points with respect to real forms. Math. Ann. 338, 1–9 (2007)

    Article  MathSciNet  Google Scholar 

  19. Heinzner, P., Schwarz, G.W.: Cartan decomposition of the moment map. Math. Ann. 337(1), 197–232 (2007)

    Article  MathSciNet  Google Scholar 

  20. Heinzner, P., Schwarz, G.W., Stötzel, H.: Stratifications with respect to actions of real reductive groups. Compos. Math. 144(1), 163–185 (2008)

    Article  MathSciNet  Google Scholar 

  21. Heinzner, P., Stötzel, H.: Critical points of the square of the momentum map. In: Catanese, F., Esnault, H., Huckleberry, A.T., Hulek, K., Peternell, T. (eds.) Global Aspects of Complex Geometry, pp. 211–226. Springer, Berlin (2006)

  22. Heinzner, P., Schützdeller, P.: Convexity properties of gradient maps. Adv. Math. 225(3), 1119–1133 (2010)

    Article  MathSciNet  Google Scholar 

  23. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence (2001). (Corrected reprint of the 1978 original)

    MATH  Google Scholar 

  24. Kapovich, M., Leeb, B., Millson, J.: Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity. J. Differ. Geom. 81(2), 297–354 (2009)

    Article  MathSciNet  Google Scholar 

  25. Kempf, G., Ness, L.: The length of vectors in representation spaces. In: Algebraic Geometry (Proceedings of Summer Meeting, University of Copenhagen, Copenhagen, 1978), Volume 732 of Lecture Notes in Mathematics, pp. 233–243. Springer, Berlin (1979)

  26. Kirwan, F.C.: Cohomology of Quotients in Symplectic and Algebraic Geometry, Volume of 31 Mathematical Notes. Princeton University Press, Princeton (1984)

    Google Scholar 

  27. Knapp, A.W.: Lie Groups Beyond an Introduction, Volume 140 of Progress in Mathematics, 2nd edn. Birkhäuser Boston Inc., Boston (2002)

    Google Scholar 

  28. Lauret, J.: On the moment map for the variety of Lie algebras. J. Funct. Anal. 202(2), 392–423 (2003)

    Article  MathSciNet  Google Scholar 

  29. Lauret, J.: A canonical compatible metric for geometric structures on nilmanifolds. Ann. Glob. Anal. Geom. 30(2), 107–138 (2006)

    Article  MathSciNet  Google Scholar 

  30. Luna, D.: Slices étale. Bull. Soc. Math. France 33, 81–105 (1973)

    MATH  Google Scholar 

  31. Luna, D.: Sur certaines opérations différentiables des groupes de Lie. Am. J. Math. 97, 172–181 (1975)

    Article  MathSciNet  Google Scholar 

  32. Mostow, G.D.: Some new decomposition theorems for semisimple Lie group. Mem. Am. Math. Soc. 14, 31–54 (1955)

    MATH  Google Scholar 

  33. Mostow, G.D.: Self-adjoint groups. Ann. Math. (2) 62, 44–55 (1955)

    Article  MathSciNet  Google Scholar 

  34. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, Volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 3rd edn. Springer, Berlin (1994)

    Google Scholar 

  35. Mundet i Riera, I.: A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Mundet i Riera, I.: A Hilbert–Mumford criterion for polystability in Kaehler geometry. Trans. Am. Math. Soc. 362(10), 5169–5187 (2010)

    Article  MathSciNet  Google Scholar 

  37. Mundet i Riera, I.: Maximal weights in Kähler geometry: flag manifolds and Tits distance. (With an appendix by A.H.W. Schmitt. Contemporary Mathematics, vol. 522 “Vector bundles and complex geometry”), pp. 113–129. American Mathematical Society, Providence (2010)

  38. Ness, L.: Stratification of the null cone via the moment map. Am. J. Math. 106, 1281–1329 (1984). With an appendix by David Mumford

    Article  MathSciNet  Google Scholar 

  39. Richardson, R.W., Slodowoy, P.J.: Minumun vectors for real reductive algebraic groups. J. Lond. Math. Soc. (2) 42, 409–429 (1990)

    Article  Google Scholar 

  40. Schwartz, G.: The topology of algebraic quotients. In: Kraft, H., Petrie, T., Schwartz, G. (eds.) Topological Methods in Algebraic Transformation Groups (New Brunswick, NJ, 1988), Progress in Mathematics, pp. 131–151. Birkhäuser, Boston (1989)

  41. Sjamaar, R.: Holomorphic slices, symplectic reduction and multiplicity representations. Ann. Math. (2) 141, 87–129 (1995)

    Article  MathSciNet  Google Scholar 

  42. Teleman, A.: Symplectic stability, analytic stability in non-algebraic complex geometry. Int. J. Math. 15(2), 183–209 (2004)

    Article  MathSciNet  Google Scholar 

  43. Wallach, N.R.: Real Reductive Groups I, Pure and Applied Mathematics, 132. Academic Press Inc., Boston (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Biliotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by PRIN 2015 “Varietà reali e complesse: geometria, topologia e analisi armonica” and GNSAGA INdAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biliotti, L. The Kempf–Ness Theorem and invariant theory for real reductive representations. São Paulo J. Math. Sci. 15, 54–74 (2021). https://doi.org/10.1007/s40863-019-00151-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-019-00151-6

Keywords

Mathematics Subject Classification

Navigation