Abstract
We apply the general Ansatz proposed by Lauret (Rend Semin Mat Torino 74:55–93, 2016) for the Laplacian co-flow of invariant \(\mathrm {G}_2\)-structures on a Lie group, finding an explicit soliton on a particular almost Abelian 7–manifold. Our methods and the example itself are different from those presented by Bagaglini and Fino (Ann Mat Pura Appl 197(6):1855–1873, 2018).
This is a preview of subscription content, access via your institution.
References
- 1.
Arroyo, R.: The Ricci flow in a class of solvmanifolds. Differ. Geom. Appl. 31(4), 472–485 (2013)
- 2.
Bagaglini, L., Fernández, M., Fino, A.: Laplacian coflow on the 7-dimensional Heisenberg group (2017). arXiv:1704.00295
- 3.
Bagaglini, L., Fino, A.: The Laplacian coflow on almost-abelian Lie groups. Ann. Mat. Pura Appl. 197(6), 1855–1873 (2018)
- 4.
Bryant, R., Xu, F.: Laplacian flow for closed \({\rm G}_2 \)-structures: short time behavior (2011). arXiv:1101.2004
- 5.
Bryant, R.: Some remarks on \({\rm G}_2 \)-structures. In: Proceedings of Gökova Geometry-Topology Conference 2005, Gökova Geometry/Topology Conference (GGT), Gökova, pp. 75–109 (2006)
- 6.
Corti, A., Haskins, M., Nordström, J., Pacini, T.: \({\rm G}_2 \)-manifolds and associative submanifolds via semi-Fano \(3\)-folds. Duke Math. J. 164(10), 1971–2092 (2015)
- 7.
Fernández, M., Fino, A., Manero, V.: \({\rm G}_2 \)-structures on Einstein solvmanifolds. Asian J. Math. 19, 321–342 (2015)
- 8.
Fernández, M., Gray, A.: Riemannian manifolds with structure group \({\rm G}_2 \). Ann. Mat. Pura Appl. (4) 132, 19–45 (1982)
- 9.
Grigorian, S.: Short-time behaviour of a modified Laplacian coflow of \({\rm G}_2 \)-structures. Adv. Math. 248, 378–415 (2013)
- 10.
Hitchin, N.: The geometry of three-forms in six and seven dimensions, pp. 1–38 (2008). arXiv:math/0010054
- 11.
Joyce, D.: Compact Riemannian 7-manifolds with holonomy \(\rm G_2 \) I. J. Differ. Geom. 43, 291–328 (1996)
- 12.
Joyce, D., Karigiannis, S.: A new construction of compact \(\rm G_2 \)-manifolds by gluing families of Eguchi–Hanson spaces, J. Differ. Geom. (2017). arXiv:1707.09325 (to appear)
- 13.
Karigiannis, S.: Flows of \({\rm G}_2 \)-structures. I. Q. J. Math. 60(4), 487–522 (2009)
- 14.
Karigiannis, S., McKay, B., Tsui, M.: Soliton solutions for the Laplacian co-flow of some \({\rm G}_2\)-structures with symmetry. Differ. Geom. Appl. 30(4), 318–333 (2012)
- 15.
Lauret, J.: Geometric flows and their solitons on homogeneous spaces. Rend Semin. Mat. Torino 74, 55–93 (2016)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moreno, A.J., Sá Earp, H.N. Explicit soliton for the Laplacian co-flow on a solvmanifold. São Paulo J. Math. Sci. (2019). https://doi.org/10.1007/s40863-019-00134-7
Published: