Abstract
Spheres can be written as homogeneous spaces G / H for compact Lie groups in a small number of ways. In each case, the decomposition of \(L^2(G/H)\) into irreducible representations of G contains interesting information. We recall these decompositions, and see what they can reveal about the analogous problem for noncompact real forms of G and H.
Similar content being viewed by others
References
Atlas of Lie Groups and Representations Software Package (2017). http://www.liegroups.org. Accessed 25 July 2018
Barbasch, D., Vogan, D.: Weyl group representations and nilpotent orbits. In: Trombi, P.C. (ed.) Representation Theory of Reductive Gropus. Progress in Mathematics, vol. 40, pp. 21–33. Birkhäuser, Boston, Basel, Stuttgart (1983)
Borel, A.: Le plan projectif des octaves et les sphères comme espaces homogènes. C. R. Acad. Sci. Paris 230, 1378–1380 (1950). (French)
Helgason, S.: Differential operators on homogeneous spaces. Acta Math. 102, 239–299 (1959)
Helgason, S.: Invariant differential equations on homogeneous manifolds. Bull. Am. Math. Soc. 83(5), 751–774 (1977)
Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000)
Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, second edn. Birkhäuser, Boston (2002)
Kobayashi, T.: Singular unitary representations and discrete series for indefinite Stiefel manifolds U(p, q;F)/U(p-m, q;F). Mem. Am. Math. Soc. 95(462), vi+106 (1992)
Kobayashi, T.: Discrete decomposability of the restriction of Aq(\(\lambda \)) with respect to reductive subgroups and its applications. Invent. Math. 117(2), 181–205 (1994)
Kobayashi, T.: Branching problems of Zuckerman derived functor modules. In: Adams, J., Lian, B., Sahi, S. (eds.) Representation Theory and Mathematical Physics, Contemporary Mathematics, vol. 557, pp. 23–40. American Mathematical Society, Providence (2011)
Kobayashi, T.: Global analysis by hidden symmetry. In: Cogdell, J., Kim, J.-L., Zhu, C.-B. (eds.) Representation Theory, Number Theory, and Invariant Theory. Progress in Mathematics, vol. 323, pp. 359–397. Birkhäuser, Cham (2017)
Koornwinder, T.H.: Invariant differential operators on nonreductive homogeneous spaces, i+15 pp. arXiv:math/0008116 [math.RT]
Krötz, B., Kuit, J.J., Opdam, E.M., Schlichtkrull, H.: The infinitesimal characters of discrete series for real spherical spaces, 40 pp (2017). arXiv:1711.08635 [mathRT]
Montgomery, D., Samelson, H.: Transformation groups of spheres. Ann. Math. (2) 44, 454–470 (1943)
Oniščik, A.L.: Decompositions of reductive Lie groups, Mat. Sb. (N.S.), vol. 80 (122), pp. 553–599 (1969) (Russian); English transl., Math. USSR Sb. vol. 9, pp. 515–554 (1969)
Rossmann, W.: Analysis on real hyperbolic spaces. J. Funct. Anal. 30(3), 448–477 (1978)
Strichartz, R.S.: Harmonic analysis on hyperboloids. J. Funct. Anal. 12, 341–383 (1973)
Vogan Jr., D.A.: The unitary dual of GL(n) over an archimedean field. Invent. Math. 83(3), 449–505 (1986)
Vogan Jr., D.A.: Unitarizability of certain series of representations. Ann. Math. 120, 141–187 (1984)
Vogan Jr., D.A.: Irreducibility of discrete series representations for semisimple symmetric spaces. In: Okamoto, K., Oshima, T. (eds.) Representations of Lie Groups, Kyoto, Hiroshima, Advanced Studies in Pure Mathematics, vol. 14, pp. 191–221. Academic Press, Boston (1988)
Vogan Jr., D.A.: The unitary dual of G2. Invent. Math. 116, 677–791 (1994)
Vogan Jr., D.A., Zuckerman, G.: Unitary representations with non-zero cohomology. Compos. Math. 53, 51–90 (1984)
Wolf, J.: The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components. Bull. Am. Math. Soc 75, 1121–1237 (1969)
Wolf, J.A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, vol. 142. American Mathematical Society, Providence (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is dedicated to Joe Wolf, in honor of all that we have learned from him about the connections among geometry, representation theory, and harmonic analysis; and in gratitude for wonderful years of friendship.
Peter E. Trapa was supported in part by NSF Grant DMS-1302237.
Rights and permissions
About this article
Cite this article
Schlichtkrull, H., Trapa, P.E. & Vogan, D.A. Laplacians on spheres. São Paulo J. Math. Sci. 12, 295–358 (2018). https://doi.org/10.1007/s40863-018-0100-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40863-018-0100-5