Skip to main content
Log in

Abstract

Spheres can be written as homogeneous spaces G / H for compact Lie groups in a small number of ways. In each case, the decomposition of \(L^2(G/H)\) into irreducible representations of G contains interesting information. We recall these decompositions, and see what they can reveal about the analogous problem for noncompact real forms of G and H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atlas of Lie Groups and Representations Software Package (2017). http://www.liegroups.org. Accessed 25 July 2018

  2. Barbasch, D., Vogan, D.: Weyl group representations and nilpotent orbits. In: Trombi, P.C. (ed.) Representation Theory of Reductive Gropus. Progress in Mathematics, vol. 40, pp. 21–33. Birkhäuser, Boston, Basel, Stuttgart (1983)

    Chapter  Google Scholar 

  3. Borel, A.: Le plan projectif des octaves et les sphères comme espaces homogènes. C. R. Acad. Sci. Paris 230, 1378–1380 (1950). (French)

    MathSciNet  MATH  Google Scholar 

  4. Helgason, S.: Differential operators on homogeneous spaces. Acta Math. 102, 239–299 (1959)

    Article  MathSciNet  Google Scholar 

  5. Helgason, S.: Invariant differential equations on homogeneous manifolds. Bull. Am. Math. Soc. 83(5), 751–774 (1977)

    Article  MathSciNet  Google Scholar 

  6. Helgason, S.: Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000)

    Book  Google Scholar 

  7. Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, second edn. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  8. Kobayashi, T.: Singular unitary representations and discrete series for indefinite Stiefel manifolds U(p, q;F)/U(p-m, q;F). Mem. Am. Math. Soc. 95(462), vi+106 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Kobayashi, T.: Discrete decomposability of the restriction of Aq(\(\lambda \)) with respect to reductive subgroups and its applications. Invent. Math. 117(2), 181–205 (1994)

    Article  MathSciNet  Google Scholar 

  10. Kobayashi, T.: Branching problems of Zuckerman derived functor modules. In: Adams, J., Lian, B., Sahi, S. (eds.) Representation Theory and Mathematical Physics, Contemporary Mathematics, vol. 557, pp. 23–40. American Mathematical Society, Providence (2011)

    Chapter  Google Scholar 

  11. Kobayashi, T.: Global analysis by hidden symmetry. In: Cogdell, J., Kim, J.-L., Zhu, C.-B. (eds.) Representation Theory, Number Theory, and Invariant Theory. Progress in Mathematics, vol. 323, pp. 359–397. Birkhäuser, Cham (2017)

    Chapter  Google Scholar 

  12. Koornwinder, T.H.: Invariant differential operators on nonreductive homogeneous spaces, i+15 pp. arXiv:math/0008116 [math.RT]

  13. Krötz, B., Kuit, J.J., Opdam, E.M., Schlichtkrull, H.: The infinitesimal characters of discrete series for real spherical spaces, 40 pp (2017). arXiv:1711.08635 [mathRT]

  14. Montgomery, D., Samelson, H.: Transformation groups of spheres. Ann. Math. (2) 44, 454–470 (1943)

    Article  MathSciNet  Google Scholar 

  15. Oniščik, A.L.: Decompositions of reductive Lie groups, Mat. Sb. (N.S.), vol. 80 (122), pp. 553–599 (1969) (Russian); English transl., Math. USSR Sb. vol. 9, pp. 515–554 (1969)

    Article  Google Scholar 

  16. Rossmann, W.: Analysis on real hyperbolic spaces. J. Funct. Anal. 30(3), 448–477 (1978)

    Article  MathSciNet  Google Scholar 

  17. Strichartz, R.S.: Harmonic analysis on hyperboloids. J. Funct. Anal. 12, 341–383 (1973)

    Article  MathSciNet  Google Scholar 

  18. Vogan Jr., D.A.: The unitary dual of GL(n) over an archimedean field. Invent. Math. 83(3), 449–505 (1986)

    Article  MathSciNet  Google Scholar 

  19. Vogan Jr., D.A.: Unitarizability of certain series of representations. Ann. Math. 120, 141–187 (1984)

    Article  MathSciNet  Google Scholar 

  20. Vogan Jr., D.A.: Irreducibility of discrete series representations for semisimple symmetric spaces. In: Okamoto, K., Oshima, T. (eds.) Representations of Lie Groups, Kyoto, Hiroshima, Advanced Studies in Pure Mathematics, vol. 14, pp. 191–221. Academic Press, Boston (1988)

    Google Scholar 

  21. Vogan Jr., D.A.: The unitary dual of G2. Invent. Math. 116, 677–791 (1994)

    Article  MathSciNet  Google Scholar 

  22. Vogan Jr., D.A., Zuckerman, G.: Unitary representations with non-zero cohomology. Compos. Math. 53, 51–90 (1984)

    MATH  Google Scholar 

  23. Wolf, J.: The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components. Bull. Am. Math. Soc 75, 1121–1237 (1969)

    Article  MathSciNet  Google Scholar 

  24. Wolf, J.A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, vol. 142. American Mathematical Society, Providence (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Trapa.

Additional information

This paper is dedicated to Joe Wolf, in honor of all that we have learned from him about the connections among geometry, representation theory, and harmonic analysis; and in gratitude for wonderful years of friendship.

Peter E. Trapa was supported in part by NSF Grant DMS-1302237.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlichtkrull, H., Trapa, P.E. & Vogan, D.A. Laplacians on spheres. São Paulo J. Math. Sci. 12, 295–358 (2018). https://doi.org/10.1007/s40863-018-0100-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-018-0100-5

Keywords

Navigation