Skip to main content

On the combinatorics of the universal enveloping algebra \(\widehat{U}_h({{\mathfrak {sl}}}_2)\)

Abstract

Using combinatorial methods we study the structural coefficients of the formal homogeneous universal enveloping algebra \(\widehat{U}_h({\mathfrak {sl}}_2) \) of the special linear algebra \( {\mathfrak {sl}}_2\) over a characteristic zero field. We provide explicit formulae for the product of generic elements in \( \widehat{U}_h({\mathfrak {sl}}_2),\) and construct combinatorial objects giving flesh to these formulae; in particular, we provide explicit formulae and combinatorial interpretations for the structural coefficients of divided power Poincaré–Birkhoff–Witt basis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Baker, A.: Matrix Groups: An Introduction to Lie Group Theory. Springer, London (2002)

    Book  MATH  Google Scholar 

  2. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-Like Structures. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Bergeron, N., Lam, T., Li, H.: Combinatorial Hopf algebras and towers of algebras—dimension, quantization and functorality. Algebr. Represent. Theory 15, 675–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blandin, H., Díaz, R.: Rational combinatorics. Adv. Appl. Math. 40, 107–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castillo, E., Díaz, R.: Rota–Baxter categories. Int. Electron. J. Algebra 5, 27–57 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge Univ. Press, Cambridge (1994)

    MATH  Google Scholar 

  7. Cheng, R., Jackson, D., Stanley, G.: Combinatorial Aspects of the Quantized Universal Enveloping Algebra of $ sl_{n+1}({\mathbb{C}})$, preprint, http://arxiv.org/abs/1601.01377

  8. Díaz, R., Pariguan, E.: Graphical introduction to classical Lie algebras. Bol. Asoc. Mat. Venez. 12, 185–216 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Díaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer $k$-symbol. Divulg. Mat. 15, 179–192 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Díaz, R., Pariguan, E.: Super, quantum and non-commutative species. Afr. Diaspora J. Math. 8, 90–130 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Díaz, R., Pariguan, E.: Symmetric quantum Weyl algebras. Ann. Math. Blaise Pascal 11, 187–203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dixmier, J.: Enveloping Algebras. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  13. Erdmann, K., Wildon, M.: Introduction to Lie Algebras. Springer, London (2006)

    Book  MATH  Google Scholar 

  14. Fulton, W., Harris, J.: Representation Theory. Springer, New York (1991)

    MATH  Google Scholar 

  15. Grinberg, D., Reiner, V.: Hopf Algebras in Combinatorics, preprint. arXiv:1409.8356

  16. Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Springer, New York (1972)

    Book  MATH  Google Scholar 

  17. Jacobson, N.: Lie Algebras. Interscience, New York (1962)

    MATH  Google Scholar 

  18. Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joyal, A.: Foncteurs analytiques et espéces de structures. In: Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, pp. 126–159. Springer, Berlin (1986)

  20. Kac, V.: Infinite dimensional Lie algebras. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  21. Kassel, C.: Quantum Groups. Springer, New York (1995)

    Book  MATH  Google Scholar 

  22. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kung, J. (ed.): Gian-Carlo Rota on Combinatorics. Birkhäuser, Boston (1995)

    Google Scholar 

  24. Laplaza, M.: A new result of coherence for distributivity. In: Coherence in Categories, Lecture Notes in Mathematics, vol. 281, pp. 214–235. Springer, Berlin (1972)

  25. Laplaza, M.: Coherence for distributivity. In: Coherence in Categories, Lecture Notes in Mathematics, vol. 281, pp. 29–65. Springer, Berlin (1972)

  26. Loday, J.-L., Ronco, M.: Combinatorial Hopf algebras. In: Quanta of Maths, Clay Mathematics Proceedings, vol. 11, pp. 347–383. Amer. Math. Soc., Providence (2011)

  27. Mubeen, S., Rehman, A.: A note on $k$-Gamma function and Pochhammer $k$-symbol. J. Inform. Math. Sci. 6, 93–107 (2014)

    Google Scholar 

  28. Poincaré, H.: Sur les groupes continus. Trans. Camb. Philos. Soc. 18, 220255 (1900)

    MATH  Google Scholar 

  29. Shepler, A., Witherspoon, S.: PoincaréBirkhoffWitt theorems. In: Eisenbud, D., Iyengar, S., Singh, A., Stafford, J., Van den Bergh, M. (eds.) Commutative Algebra and Noncommutative Algebraic Geometry I, vol. 67. MSRI Publications, Berkeley (2015)

    Google Scholar 

  30. Schmid, W.: Hopf algebras in combinatorics. Can. J. Math. 45, 412–428 (1993)

    Article  Google Scholar 

  31. Ton-That, T., Tran, T.-D.: Revue dhistoire des mathématiques 5, 249–284 (1999)

  32. Varadarajan, V.: Lie Groups, Lie Algebras, and their Representations. Springer, Berlin (1974)

    MATH  Google Scholar 

Download references

Acknowledgements

E. Salamanca was partially supported by a “Young Researcher” − COLCIENCIAS grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Díaz.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, R., Salamanca, E. On the combinatorics of the universal enveloping algebra \(\widehat{U}_h({{\mathfrak {sl}}}_2)\). São Paulo J. Math. Sci. 13, 342–369 (2019). https://doi.org/10.1007/s40863-018-0088-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-018-0088-x

Keywords

Mathematics Subject Classification