The isomorphism problem for multiparameter quantized Weyl algebras

Abstract

In this note we solve the isomorphism problem for the multiparameter quantized Weyl algebras, in the case when none of the deformation parameters \(q_i\) is a root of unity, over an arbitrary field.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adian, S.I.: On algorithmic problems in effectively complete classes of groups. (Russian) Dokl. Akad. SSSR 123, 13–16 (1958)

    Google Scholar 

  2. 2.

    Alev, J., Dumas, F.: Sur le corps des fractions de certaines algèbres quantiques. J. Algebra 170, 229–265 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Andruskiewitsch, N.: On the automorphisms of \(U_q(g)\). In: “Quantum groups”, IRMA Lectures in Mathematics and Theoretical Physics 12, pp. 107–133. European Mathematical Society (EMS), Zürich (2008)

  4. 4.

    Bavula, V.V.: The finite-dimensionality of Ext\(^{{\rm n}}\) and Tor\(_{{\rm n}}\) of simple modules over a class of algebras. Funkt. Anal. Priloz. 25, 80–82 (1991)

    MathSciNet  Google Scholar 

  5. 5.

    Bavula, V.V., Jordan, D.A.: Isomorphism problems and groups of automorphisms for generalized Weyl algebras. Trans. Am. Math. Soc. 353, 769–794 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Brown, K.A., Goodearl, K.R.: Lectures on Algebraic Quantum Groups. Birkhäuser, Basel (2002)

    Google Scholar 

  7. 7.

    Cauchon, G.: Effacement des dérivations et spectres premiers des algèbres quantiques. J. Algebra 260, 476–518 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Fujita, H., Kirkman, E., Kuzmanovich, J.: Global and Krull dimensions of quantum Weyl algebras. J. Algebra 216, 405–416 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Futorny, V., Hartwig, J.T.: Multiparameter twisted Weyl algebras. J. Algebra 357, 69–93 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Gaddis, J.: Isomorphisms of some quantum spaces. In: Van Huynh, D. et al. (eds.) Ring Theory and its Applications. Contemp. Math., vol. 609, pp. 107–116. Amer. Math. Soc., Providence, RI (2014)

  11. 11.

    Giaquinto, A., Zhang, J.J.: Quantum Weyl algebras. J. Algebra 176, 861–881 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Gómez-Torrecillas, J., El Kaotit, L.: The group of automorphisms of the coordinate ring of quantum symplectic space. Beitr. Algebra Geom. 43, 597–601 (2002)

    Google Scholar 

  13. 13.

    Goodearl, K.R.: Prime spectra of quantized coordinate rings. In: Van Oystaeyen, F., Saorín, M. (eds.) Interactions between Ring Theory and Representations of Algebras (Murcia 1998), Lecture Notes in Pure and Applied Math, vol. 210, pp. 205–238. Marcel Dekker, New York (2000)

  14. 14.

    Goodearl, K.R., Lenagan, T.H.: Catenarity in quantum algebras. J. Pure Appl. Algebra 111, 123–142 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Goodearl, K.R., Letzter, E.S.: The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras. Trans. Am. Math. Soc. 352, 1381–1403 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Hartwig, J.T.: Locally finite simple weight modules over twisted generalized Weyl algebras. J. Algebra 303, 42–76 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Jordan, D.A.: A simple localization of the quantized Weyl algebra. J. Algebra 174, 267–281 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Joseph, A.: Quantum Groups and Their Primitive Ideals. Springer, Berlin (1995)

    Google Scholar 

  19. 19.

    Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand-Kirillov Dimension (Rev. Ed.). Graduate Studies in Math, vol. 22. American Mathematical Society, Providence (2000)

    Google Scholar 

  20. 20.

    Maltsiniotis, G.: Groupes quantiques et structures différentielles. CR Acad. Sci. Paris Sér. I Math. 311, 831–834 (1990)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Mazorchuk, V., Turowska, L.: \(\ast \)-representations of twisted generalized Weyl constructions. Algebra Represent. Theory 5, 163–186 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Wiley, Chichester (1987)

    Google Scholar 

  23. 23.

    Rabin, M.O.: Recursive unsolvability of group theoretic problems. Ann. Math. 67, 172–194 (1958)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Richard, L., Solotar, A.: Isomorphisms between quantum generalized Weyl algebras. J. Algebra Appl. 5, 271–285 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Rigal, L.: Spectre de l’algèbre de Weyl quantique. Beitr. Algebra Geom. 37, 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Shestakov, I.P., Umirbaev, U.U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17, 197–227 (2003)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Smith, S.P.: Quantum groups: an introduction and survey for ring theorists. In: Montgomery, S., Small, L. (eds.) Noncommutative Rings, pp. 131–178. Springer, New York (1992)

  28. 28.

    Yakimov, M.: The Launois–Lenagan conjecture. J. Algebra 392, 1–9 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Yakimov, M.: Rigidity of quantum tori and the Andruskiewitsch–Dumas conjecture. Sel. Math. (N.S.) 20(2), 421–464 (2014)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. T. Hartwig.

Additional information

The research of the first-named author was supported by National Science Foundation Grant DMS-0800948.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goodearl, K.R., Hartwig, J.T. The isomorphism problem for multiparameter quantized Weyl algebras. São Paulo J. Math. Sci. 9, 53–61 (2015). https://doi.org/10.1007/s40863-015-0003-7

Download citation

Keywords

  • Quantized Weyl algebras
  • Quantum algebras
  • Isomorphism problem

Mathematics Subject Classification

  • Primary 16W35
  • Secondary 16S36