Symmetry methods in mathematical biology

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Many biological systems have aspects of symmetry. Symmetry is formalized using group theory. This theory applies not just to the geometry of symmetric systems, but to their dynamics. The basic ideas of symmetric dynamics and bifurcation theory are applied to speciation, animal locomotion, the visual cortex, pattern formation in animal markings and geographical location, and the geometry of virus protein coats.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Alexander, RMcN, Goldspink, J.M. (eds.): Mechanics and Energetics of Animal Locomotion. Chapman and Hall, London (1977)

    Google Scholar 

  2. 2.

    Blaszczyk, J., Dobrzecka, C.: Alteration in the pattern of locomotion following a partial movement restraint in puppies. Acta Neurobiol. Exp. 49, 39–46 (1989)

    Google Scholar 

  3. 3.

    Bödeker, H.U.:

  4. 4.

    Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.C.: Geometric visual hallucinations, Euclidean symmetry, and the functional architecture of striate cortex. Philos. Trans. R. Soc. (Lond.) B 356, 1–32 (2001)

    Article  Google Scholar 

  5. 5.

    Buono, P.-L.: Models of central pattern generators for quadruped locomotion. II. Secondary gaits. J. Math. Biol. 42, 327–346 (2001)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Buono, P.L., Golubitsky, M.: Models of central pattern generators for quadruped locomotion: I. Primary gaits. J. Math. Biol. 42, 291–326 (2001)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Buono, P.-L., Lamb, J.S.W., Roberts, R.M.: Bifurcation and branching of equilibria in reversible equivariant vector fields. Nonlinearity 21, 625–660 (2008)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Buzano, E., Golubitsky, M.: Bifurcation on the hexagonal lattice and the planar Bénard problem. Philos. Trans. R. Soc. Lond. A 308, 617–667 (1983)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. 27, pp. 1–24. Cold Spring Harbor Laboratory, New York (1962)

  10. 10.

    Chossat, P., Faugeras, O.: Hyperbolic planforms in relation to visual edges and textures perception. PLoS Comput. Biol. 5(12), e1000625 (2009)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Chossat, P., Faye, G., Faugeras, O.: Bifurcation of hyperbolic planforms. J. Nonlinear Sci. 21(4) (2011). doi:10.1007/s00332-010-9089-3

  12. 12.

    Christaller, W.: Central Places in Southern Germany. Prentice Hall, Englewood Cliffs (1966)

    Google Scholar 

  13. 13.

    Cicogna, G.: Symmetry breakdown from bifurcations. Lett. Nuovo Cimento 31, 600–602 (1981)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Clarke, M., Wilson, A.G.: The dynamics of urban spatial structure: the progress of a research programme. Trans. Inst. Br. Geogr. 10, 427–451 (1985)

    Article  Google Scholar 

  15. 15.

    Cohen, J., Stewart, I.: Polymorphism viewed as phenotypic symmetry-breaking. In: Malik, S.K. (ed.) Nonlinear Phenomena in Physical and Biological Sciences, pp. 1–63. Indian National Science Academy, New Delhi (2000)

    Google Scholar 

  16. 16.

    Collins, J.J., Stewart, I.: Hexapodal gaits and coupled nonlinear oscillator models. Biol. Cybern. 68, 287–298 (1993)

    Article  Google Scholar 

  17. 17.

    Collins, J.J., Stewart, I.: Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlinear Sci. 3, 349–392 (1993)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Cowan, J.: Spontaneous symmetry beaking in large scale nervous activity. Int. J. Quantum Chem. 22, 1059–1082 (1984)

    Article  Google Scholar 

  19. 19.

    Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1961)

    Google Scholar 

  20. 20.

    Crawford, J.D., Golubitsky, M., Gomes, M.G.M., Knobloch, E., Stewart, I.: Boundary conditions as symmetry constraints. In: Roberts, R.M., Stewart, I. (eds.) Singularity Theory and its Applications—Warwick 1989, Part II: Singularities, Bifurcations and Dynamics, Lecture Notes in Mathematics, vol. 1463, pp. 63–79. Springer, Heidelberg (1991)

    Google Scholar 

  21. 21.

    Dias, A.P.S., Stewart, I.: Secondary bifurcations in systems with all-to-all coupling. Proc. R. Soc. Lond. A 459, 1–18 (2003)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Dieckmann, U., Doebeli, M.: On the origin of species by sympatric speciation. Nature 400, 354–457 (1999)

    Article  Google Scholar 

  23. 23.

    Dionne, B., Silber, M., Skeldon, A.C.: Stability results for steady, spatially periodic planforms. Nonlinearity 10, 321–353 (1997)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Economou, A.D., Ohazama, A., Porntaveetus, T., Sharpe, P.T., Kondo, S., Basson, M.A., Gritli-Linde, A., Cobourne, M.T., Green, J.B.: Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate. Nat. Genet. 44, 348–351 (2012). doi:10.1038/ng.1090

    Article  Google Scholar 

  25. 25.

    Elmhirst, T.: \(\mathbb{S}_N\)-equivariant symmetry-breaking bifurcations. Int. J. Bifurc. Chaos 14, 1017–1036 (2004)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Elmhirst, T., Doebeli, M., Stewart, I.: Pod systems: an equivariant ordinary differential equation approach to dynamical systems on a spatial domain. Nonlinearity 24, 1507–1531 (2008)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Ermentrout, G.B., Cowan, J.D.: A mathematical theory of visual hallucination patterns. Biol. Cybern. 4, 137–150 (1979)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Faye, G., Chossat, P.: Bifurcation diagrams and heteroclinic networks of octagonal H-planforms. J. Nonlinear Sci. 22, 277–325 (2012). doi:10.1007/s00332-011-9118-x

    MathSciNet  Article  Google Scholar 

  29. 29.

    Field, M., Golubitsky, M.: Symmetry in Chaos. Oxford University Press, Oxford (1992)

    Google Scholar 

  30. 30.

    Field, M., Melbourne, I., Nicol, M.: Symmetric attractors for diffeomorphisms and flows. Proc. Lond. Math. Soc. 72, 657–696 (1996)

    MathSciNet  Article  Google Scholar 

  31. 31.

    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  32. 32.

    Fulton, W.: Algebraic Curves. Benjamin, New York (1974)

    Google Scholar 

  33. 33.

    Gambaryan, P.P.: How Mammals Run: Anatomical Adaptations. Wiley, New York (1974)

    Google Scholar 

  34. 34.

    Golubitsky, M., Knobloch, E., Stewart, I.: Target patterns and spirals in planar reaction–diffusion systems. J. Nonlinear Sci. 10, 333–354 (2000)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Golubitsky, M., Romano, D., Wang, Y.: Network periodic solutions: full oscillation and rigid synchrony. Nonlinearity 23, 3227–3243 (2010)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Golubitsky, M., Romano, D., Wang, Y.: Network periodic solutions: patterns of phase-shift synchrony. Nonlinearity 25, 1045–1074 (2012)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Golubitsky, M., Shiau, L.J., Stewart, I.: Spatio-temporal symmetries in the disynaptic canal-neck projection. SIAM J. Appl. Math. 67 (2007). doi:10.1137/060667773

  38. 38.

    Golubitsky, M., Shiau, L.J., Török, A.: Bifurcation on the visual cortex with weakly anisotropic lateral coupling. SIAM J. Appl. Dyn. Syst. 2, 97–143 (2003)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Golubitsky, M., Stewart, I.: The Symmetry Perspective. Birkhäuser, Basel (2002)

    Google Scholar 

  40. 40.

    Golubitsky, M., Stewart, I., Buono, P.-L., Collins, J.J.: A modular network for legged locomotion. Phys. D 115, 56–72 (1998)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Golubitsky, M., Stewart, I., Buono, P.-L., Collins, J.J.: Symmetry in locomotor central pattern generators and animal gaits. Nature 401, 693–695 (1999)

    Article  Google Scholar 

  42. 42.

    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. 2, Applied Mathematical Sciences 69. Springer, New York (1988)

    Google Scholar 

  43. 43.

    Gray, J.: Animal Locomotion. Weidenfeld and Nicholson, London (1968)

    Google Scholar 

  44. 44.

    Greenberg, M.J.: Euclidean and Non-Euclidean Geometries: Development and History. W.H. Freeman, New York (2008)

    Google Scholar 

  45. 45.

    Grillner, S., Parker, D., El Manira, A.J.: Vertebrate locomotion—a lamprey perspective. Ann. N. Y. Acad. Sci. 860, 1–18 (1998)

    Article  Google Scholar 

  46. 46.

    Grillner, S., Wallén, P.: Central pattern generators for locomotion, with special reference to vertebrates. Ann. Rev. Neurosci 8, 233–261 (1985)

    Article  Google Scholar 

  47. 47.

    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Google Scholar 

  48. 48.

    Higashi, M., Takimoto, G., Yamamura, N.: Sympatric speciation by sexual selection. Nature 402, 523–526 (1999)

    Article  Google Scholar 

  49. 49.

    Hofbauer, J., Sigmund, K.: Evolutionary Games of Population Dynamics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  50. 50.

    Höfer, T.: Modelling dyctyostelium aggregation. D.Phil Thesis, Oxford University, Oxford (1996)

  51. 51.

    Hoppensteadt, F.: An Introduction to the Mathematics of Neurons. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  52. 52.

    Humphreys, J.E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  53. 53.

    Ikeda, K., Murota, K., Akamatsu, T., Kono, T., Takayama, Y., Sobhaninejad, G., Shibasaki, A.: Self-organizing hexagons in economic agglomeration: coreperiphery models and central place theory. Mathematical Engineering Technical Reports METR-2010-28, Department of Mathematics, University of Tokyo (2010)

  54. 54.

    Ikeda, K., Murota, K., Takashi, A., Kono, T., Takayama, Y.: Self-organizing hexagons for core-periphery models: central place theory and group theory. Mathematical Engineering Technical Reports METR-2011-24, Department of Mathematics, University of Tokyo (2011)

  55. 55.

    Ikeda, K., Murota, K., Takashi, A.: Self-organization of Lösch’s hexagons in economic agglomeration for core-periphery models. Mathematical Engineering Technical Reports METR 2011-15, Dept. of Mathematical Informatics, University of Tokyo (2011)

  56. 56.

    Iooss, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory, 2nd edn. Springer, New York (1990)

    Google Scholar 

  57. 57.

    Kawecki, T.J.: Sympatric speciation via habitat specialization driven by deleterious mutations. Evolution 51, 1751–1763 (1997)

    Article  Google Scholar 

  58. 58.

    Keef, T., Twarock, R.: Affine extensions of the icosahedral group with applications to the three-dimensional organisation of simple viruses. J. Math. Biol. 59, 287–313 (2009)

    MathSciNet  Article  Google Scholar 

  59. 59.

    Kirchgässner, K.: Exotische Lösungen des Bénardschen Problems. Math. Methods Appl. Sci. 1, 453–467 (1979)

    MathSciNet  Article  Google Scholar 

  60. 60.

    Kisdi, E., Geritz, S.A.H.: Adaptive dynamics in allele space: evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution 53, 993–1008 (1999)

    Article  Google Scholar 

  61. 61.

    Klüver, H.: Mescal and Mechanisms of Hallucinations. University of Chicago Press, Chicago (1966)

    Google Scholar 

  62. 62.

    Kondo, S., Asai, R.: A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (2002). doi:10.1038/376765a0

    Article  Google Scholar 

  63. 63.

    Kondrashov, A.S., Kondrashov, F.A.: Interactions among quantitative traits in the course of sympatric speciation. Nature 400, 351–354 (1999)

    Article  Google Scholar 

  64. 64.

    Kopell, N., Ermentrout, G.B.: Symmetry and phaselocking in chains of weakly coupled oscillators. Comm. Pure Appl. Math. 39, 623–660 (1986)

    MathSciNet  Article  Google Scholar 

  65. 65.

    Kopell, N., Ermentrout, G.B.: Coupled oscillators and the design of central pattern generators. Math. Biosci. 90, 87–109 (1988)

    MathSciNet  Article  Google Scholar 

  66. 66.

    Krinsky, V.I.: Mathematical models of cardiac arrhythmias (spiral waves). Pharm. Ther. B 3, 539–555 (1978)

    Google Scholar 

  67. 67.

    Krinsky, V.I., Medvinskii, A.B., Parfilov, A.V.: Evolutionary autonomous spiral waves (in the heart). Math. Cybern. Pop. Ser. (Life Sci.) 8, 1–48 (1986)

    Google Scholar 

  68. 68.

    Krugman, P.: The Self-Organizing Economy. Blackwell, Malden (1996)

    Google Scholar 

  69. 69.

    Lamb, J.S.W.: Reversing symmetries in dynamical systems. J. Phys. A 25, 925–937 (1992)

    MathSciNet  Article  Google Scholar 

  70. 70.

    Liddington, R.C., Yan, Y., Moulai, J., Sahli, R., Benjamin, T.L., Harrison, S.C.: Structure of simian virus 40 at 3.8-Å resolution. Nature 354, 278–284 (1991)

    Article  Google Scholar 

  71. 71.

    Lösch, A.: The Economics of Location. Yale University Press, London (1954)

    Google Scholar 

  72. 72.

    Macdonald, I.D.: The Theory of Groups. Clarendon Press, Oxford (1968)

    Google Scholar 

  73. 73.

    Mayr, E.: Animal Species and Evolution. Harvard University Press, Cambridge (1963)

    Google Scholar 

  74. 74.

    McCollum, G., Boyle, R.: Rotations in a vertebrate setting: evaluation of the symmetry group of the disynaptic canal-neck projection. Biol. Cybern. 90, 203–217 (2004)

    Article  Google Scholar 

  75. 75.

    McNally, J.G., Cox, E.C.: Spots and stripes: the patterning spectrum in the cellular slime mould Polysphondylium pallidium. Development 105, 323–333 (1989)

    Google Scholar 

  76. 76.

    Meller, J.: The Buckminster Fuller Reader. Jonathan Cope, London (1970)

    Google Scholar 

  77. 77.

    Mosekilde, E., Maistrenko, Y., Postonov, D.: Chaotic Synchronization. World Scientific, Singapore (2002)

    Google Scholar 

  78. 78.

    Munz, M., Weidlich, W.: Settlement formation, part II: numerical simulation. Ann. Reg. Sci. 24, 177–196 (1990)

    Article  Google Scholar 

  79. 79.

    Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    Google Scholar 

  80. 80.

    Nagata, W., Harrison, L.G., Wehner, S.: Reaction–diffusion models of growing plant tips: bifurcations on hemispheres. Bull. Math. Biol. 65, 571–607 (2003)

    Article  Google Scholar 

  81. 81.

    Nagumo, J.S., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2071 (1962)

    Article  Google Scholar 

  82. 82.

    Ridley, M.: Evolution. Blackwell, Oxford (1996)

    Google Scholar 

  83. 83.

    Rundle, H.D., Nagel, L., Boughman, J.W., Schluter, D.: Natural selection and parallel speciation in sympatric sticklebacks. Science 287, 306–308 (2000)

    Article  Google Scholar 

  84. 84.

    Sattinger, D.H.: Group representation theory, bifurcation theory and pattern formation. J. Funct. Anal. 28, 58–101 (1978)

    MathSciNet  Article  Google Scholar 

  85. 85.

    Sattinger, D.H., Weaver, O.L.: Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. Springer, New York (1986)

    Google Scholar 

  86. 86.

    Schwartz, E.: Spatial mapping in the primate sensory projection: analytic structure and relevance to projection. Biol. Cybern. 25, 181–194 (1977)

    Article  Google Scholar 

  87. 87.

    Seger, J.: Intraspecific resource competition as a cause of sympatric speciation. In: Greenwood, P.J., Harvey, P.H., Slatkin, M. (eds.) Evolution. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  88. 88.

    Sheth, R., Marcon, L., Bastida, F., Junco, M., Quintana, L., Dahn, R., Kmita, M., Sharpe, J., Ros, M.: Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338, 1476–1480 (2012). doi:10.1126/science.1226804

    Article  Google Scholar 

  89. 89.

    Sick, S., Reinker, S., Timmer, J., Schlake, T.: WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science 314, 1447–1450 (2006). doi:10.1126/science.1130088

    Article  Google Scholar 

  90. 90.

    Stewart, I.: Self-organization in evolution: a mathematical perspective. Philos. Trans. R. Soc. Lond. A 361, 1101–1123 (2003)

    Article  Google Scholar 

  91. 91.

    Stewart, I., Elmhirst, T., Cohen, J.: Symmetry-breaking as an origin of species. In: Buescu, J., Castro, S.B.S.D., Dias, A.P.S., Labouriau, I.S. (eds.) Bifurcations, Symmetry and Patterns, pp. 3–54. Birkhäuser, Basel (2003)

    Google Scholar 

  92. 92.

    Stewart, I., Parker, M.: Periodic dynamics of coupled cell networks I: rigid patterns of synchrony and phase relations. Dyn. Syst. 22, 389–450 (2007)

    MathSciNet  Article  Google Scholar 

  93. 93.

    Stewart, I., Parker, M.: Periodic dynamics of coupled cell networks II: cyclic symmetry. Dyn. Syst. 23, 17–41 (2008)

    MathSciNet  Article  Google Scholar 

  94. 94.

    Tachikawa, M.: Specific locking in populations dynamics: symmetry analysis for coupled heteroclinic cycles. J. Comput. Appl. Math. 201, 374–380 (2007)

    MathSciNet  Article  Google Scholar 

  95. 95.

    Tregenza, T., Butlin, R.K.: Speciation without isolation. Nature 400, 311–312 (1999)

    Article  Google Scholar 

  96. 96.

    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. B 237, 32–72 (1952)

    Article  Google Scholar 

  97. 97.

    Twarock, R.: A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477–482 (2004)

    MathSciNet  Article  Google Scholar 

  98. 98.

    Twarock, R.: A mathematical physicist’s approach to the structure and assembly of viruses. Philos. Trans. R. Soc. Lond. A 364, 3357–3374 (2006)

    MathSciNet  Article  Google Scholar 

  99. 99.

    Vanderbauwhede, A.: Local Bifurcation and Symmetry. Pitman, Boston (1982)

    Google Scholar 

  100. 100.

    Vincent, T.L., Vincent, T.L.S.: Evolution and control system design. IEEE Control Syst. Mag, pp. 20–35 (2000)

  101. 101.


  102. 102.

    Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  103. 103.

    Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  Google Scholar 

  104. 104.

    Winfree, A.T.: Sudden cardiac death: a problem in topology. Sci. Am. 248, 144–161 (1983)

    Article  Google Scholar 

  105. 105.

    Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47 (1969). doi:10.1016/S0022-5193(69)80016-0

    Article  Google Scholar 

  106. 106.

    Wrigley, N.G.: An electron microscope study of the structure of Sericesthis iridescent virus. J. Gen. Virol. 5, 123–134 (1969)

    Article  Google Scholar 

  107. 107.

    Wrigley, N.G.: An electron microscope study of the structure of Tipula iridescent virus. J. Gen. Virol. 5, 169–173 (1970)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ian Stewart.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Golubitsky, M., Stewart, I. Symmetry methods in mathematical biology. São Paulo J. Math. Sci. 9, 1–36 (2015).

Download citation


  • Symmetry
  • Biology
  • Network
  • Bifurcation
  • Speciation
  • Locomotion
  • Hallucination
  • Neuroscience
  • Virus