Skip to main content

Advertisement

Log in

Multi-objective optimization of task assignment in distributed mobile edge computing

  • Original Article
  • Published:
Journal of Reliable Intelligent Environments Aims and scope Submit manuscript

Abstract

Traditional computing models and centralized cloud computing are not capable of meeting today’s application requirements, especially when deploying technologies, such as the Internet of things (IoT), 5G, and wearable devices, on a large scale. Mobile edge computing (MEC) introduces the feasibility of using edge and smart devices, such as gateways and smart phones, to perform task execution of different applications. Moreover, an efficient task scheduling approach should consider the deadlines requirements and the power consumption of the edge devices. This paper proposes a multi-objective optimization solution to assign different application tasks to different edge devices while minimizing the energy consumption of edge devices and the computation time of tasks. Task dependencies and data distribution are considered within a new and more general MEC model. Multi-objective evolutionary algorithm (MOEA) framework is used to solve the optimization problem subject to deadline and power consumption constraints. Results show that the proposed multi-objective approach achieves better performance in terms of energy and computation time when compared to a single objective approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bughin J, Chui M, Manyika J (2013) Ten it-enabled business trends for the decade ahead. McKinsey Q. 13:1–3

    Google Scholar 

  2. Lee SK, Bae M, Kim H (2017) Future of IOT networks: a survey. Appl. Sci. 7(10):1072

    Article  Google Scholar 

  3. Sahni Y, Cao J, Zhang S, Yang L (2017) Edge mesh: a new paradigm to enable distributed intelligence in internet of things. IEEE Access 5:16441–16458

    Article  Google Scholar 

  4. Al-Zinati M, Alrashdan R, Al-Duwairi B, Aloqaily M (2021) A re-organizing biosurveillance framework based on fog and mobile edge computing. Multimed Tools Appl 80(11):16805–16825

    Article  Google Scholar 

  5. Wu Q, Ding G, Xu Y, Feng S, Du Z, Wang J, Long K (2014) Cognitive internet of things: a new paradigm beyond connection. IEEE Internet Things J 1(2):129–143

    Article  Google Scholar 

  6. Gil D, Ferrández A, Mora-Mora H, Peral J (2016) Internet of things: a review of surveys based on context aware intelligent services. Sensors 16(7):1069

    Article  Google Scholar 

  7. Maarala AI, Su X, Riekki J (2016) Semantic reasoning for context-aware internet of things applications. IEEE Internet Things J 4(2):461–473

    Article  Google Scholar 

  8. Mell PM, Grance T (2011) Sp 800-145. the NIST definition of cloud computing. Gaithersburg, MD, USA, Tech rep

  9. Wang L, Tao J, Kunze M, Castellanos AC, Kramer D, Karl W (2008) Scientific cloud computing: early definition and experience. In: 2008 10th IEEE international conference on high performance computing and communications, IEEE, pp 825–830

  10. Botta A, De Donato W, Persico V, Pescapé A (2016) Integration of cloud computing and internet of things: a survey. Future Gener Comput Syst 56:684–700

    Article  Google Scholar 

  11. Consortium O et al. (2017) Openfog reference architecture for fog computing. In: Architecture Working Group, pp 1–162

  12. Jalali F, Hinton K, Ayre R, Alpcan T, Tucker RS (2016) Fog computing may help to save energy in cloud computing. IEEE J Sel Areas Commun 34(5):1728–1739

    Article  Google Scholar 

  13. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp 13–16

  14. Yi S, Li C, Li Q (2015) A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 workshop on mobile big data, pp 37–42

  15. Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing: a platform for internet of things and analytics. In: Big data and internet of things: a roadmap for smart environments, Springer, pp 169–186

  16. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: vision and challenges. IEEE Internet Things J 3(5):637–646

    Article  Google Scholar 

  17. Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J, Jue JP (2019) All one needs to know about fog computing and related edge computing paradigms: a complete survey. J Syst Archit 98:289–330

    Article  Google Scholar 

  18. Giust F, Verin G, Antevski K, Chou J, Fang Y, Featherstone W, Fontes F, Frydman D, Li A, Manzalini A et al (2018) Mec deployments in 4g and evolution towards 5g. ETSI White Pap 24(2018):1–24

    Google Scholar 

  19. Jarrah M, Jaradat M, Jararweh Y, Al-Ayyoub M, Bousselham A (2015) A hierarchical optimization model for energy data flow in smart grid power systems. Inf Syst 53:190–200. https://doi.org/10.1016/j.is.2014.12.003

    Article  Google Scholar 

  20. Jarrah M, Al-Shrida F (2017) A multi-objective evolutionary solution to improve the quality of life in smart cities. In: 2017 14th international conference on smart cities: improving quality of life using ICT IoT (HONET-ICT), pp 36–39. https://doi.org/10.1109/HONET.2017.8102217

  21. Van den Abeele F, Hoebeke J, Teklemariam GK, Moerman I, Demeester P (2015) Sensor function virtualization to support distributed intelligence in the internet of things. Wirel Pers Commun 81(4):1415–1436

    Article  Google Scholar 

  22. Wang Z, Zhao Z, Min G, Huang X, Ni Q, Wang R (2018) User mobility aware task assignment for mobile edge computing. Future Gener Comput Syst 85:1–8

    Article  Google Scholar 

  23. Liu CF, Bennis M, Poor HV (2017) Latency and reliability-aware task offloading and resource allocation for mobile edge computing. In: 2017 IEEE Globecom workshops (GC Wkshps), IEEE, pp 1–7

  24. Du Y, Wang K, Yang K, Zhang G (2018) Energy-efficient resource allocation in UAV based MEC system for IOT devices. In: 2018 IEEE global communications conference (GLOBECOM), IEEE, pp 1–6

  25. Kao YH, Krishnamachari B, Ra MR, Bai F (2017) Hermes: latency optimal task assignment for resource-constrained mobile computing. IEEE Trans Mob Comput 16(11):3056–3069

    Article  Google Scholar 

  26. Cheng Y, Liao Y, Zhai X (2020) Energy-efficient resource allocation for UAV-empowered mobile edge computing system. In: 2020 IEEE/ACM 13th international conference on utility and cloud computing (UCC), IEEE, pp 408–413

  27. Yaqub U, Sorour S (2018) Multi-objective resource optimization for hierarchical mobile edge computing. In: 2018 IEEE global communications conference (GLOBECOM), IEEE, pp 1–6

  28. Song F, Xing H, Luo S, Zhan D, Dai P, Qu R (2020) A multiobjective computation offloading algorithm for mobile-edge computing. IEEE Internet Things J 7(9):8780–8799

    Article  Google Scholar 

  29. Zhou SZ, Zhan ZH, Chen ZG, Kwong S, Zhang J (2020) A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction. IEEE Trans Intell Transport Syst. https://doi.org/10.1109/TITS.2020.2994779

    Article  Google Scholar 

  30. Fang W, Zhang Q, Sun J, Wu XJ (2020) Mining high quality patterns using multi-objective evolutionary algorithm. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2020.3033519

    Article  Google Scholar 

  31. Sun J, Li H, Zhang Y, Xu Y, Zhu Y, Zang Q, Wu Z, Wei Z (2021) Multiobjective task scheduling for energy-efficient cloud implementation of hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 14:587–600. https://doi.org/10.1109/JSTARS.2020.3036896

    Article  Google Scholar 

  32. Torquato R, Shi Q, Xu W, Freitas W (2015) A Monte Carlo simulation platform for studying low voltage residential networks. In: 2015 IEEE power energy society general meeting, p 1.https://doi.org/10.1109/PESGM.2015.7285654

  33. Zhang X, Mao Y, Zhang J, Letaief KB (2017) Multi-objective resource allocation for mobile edge computing systems. In: 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), pp 1–5. https://doi.org/10.1109/PIMRC.2017.8292379

  34. Yang M, Ma H, Wei S, Zeng Y, Chen Y, Hu Y (2020) A multi-objective task scheduling method for fog computing in cyber-physical-social services. IEEE Access 8:65085–65095. https://doi.org/10.1109/ACCESS.2020.2983742

    Article  Google Scholar 

  35. Shi W, Dustdar S (2016) The promise of edge computing. Computer 49(5):78–81

    Article  Google Scholar 

  36. Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks: a survey. Comput Netw 47(4):445–487

    Article  Google Scholar 

  37. Borgia E (2014) The internet of things vision: key features, applications and open issues. Comput Commun 54:1–31

    Article  Google Scholar 

  38. Voorneveld M (2003) Characterization of pareto dominance. Oper Res Lett 31(1):7–11

    Article  MathSciNet  Google Scholar 

  39. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  40. Dinh TQ, Tang J, La QD, Quek TQ (2017) Offloading in mobile edge computing: task allocation and computational frequency scaling. IEEE Trans Commun 65(8):3571–3584

    Google Scholar 

  41. Tran MQ, Nguyen DT, Le VA, Nguyen DH, Pham TV (2019) Task placement on fog computing made efficient for IOT application provision. Wirel Commun Mob Comput 2019:6215454:1–6215454:17

  42. Hadka D (2019) Moea framework user guide. version 2.7. http://moeaframework.org/. Accessed 15 Mar 2021

  43. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  44. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  45. Al Moubayed N, Petrovski A, McCall J (2014) D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces. Evol Comput 22(1):47–77

    Article  Google Scholar 

  46. Nebro A, Durillo J, Garcia-Nieto J, Coello Coello C, Luna F, Alba E (2009) SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE symposium on computational intelligence in multi-criteria decision-making (MCDM), pp 66–73. https://doi.org/10.1109/MCDM.2009.4938830

  47. Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moath Jarrah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasri, S., Jarrah, M. & Al-Duwairi, B. Multi-objective optimization of task assignment in distributed mobile edge computing. J Reliable Intell Environ 8, 21–33 (2022). https://doi.org/10.1007/s40860-021-00162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40860-021-00162-1

Keywords

Navigation