Skip to main content
Log in

Cross-kingdom microRNA transfer for the control of the anthracnose disease in cassava

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Cassava anthracnose disease (CAD), caused by Colletotrichum gloeosporioides f. sp. manihotis, is one of the most important diseases that cause significant yield loss in cassava. Recently, involvement of microRNAs (miRNAs), a class of small, single-stranded, non-coding RNAs, in the resistance against anthracnose disease has been indicated. In this study, two cassava cultivars that have different degree of CAD susceptibility were utilized to investigate the differences in defense responses these cultivars exhibited and to examine the role of seven miRNA families (mes-MIR156, 159, 164, 171, 396, 408, and 530) during CAD infection. Unlike the susceptible cultivar, the tolerant cultivar responded to fungal attack in the forms of hypersensitive response at the primary site of infection (or stem), as well as systemic induction of different defensive measures in the distal organs (or leaves) such as callose deposition, H2O2 accumulation, and upregulated expression of the miRNAs being studied. Two of the miRNAs, mes-MIR156 and mes-MIR164, were able to move across the kingdom boundary to the invading fungal cells. With the availability of genome sequence of C. gloeosporioides strain Cg-14, the mes-MIR156 and mes-MIR164 were predicted to target five and eleven fungal genes, respectively. Based on the differences in defense responses observed in the CAD-tolerant and CAD-susceptible cultivars, we then propose that the tolerant cultivar possesses a distinct defense mechanism against C. gloeosporioides f. sp. manihotis infection. In this defense mechanism, certain miRNAs are needed to help protect the host plant from the invading fungal pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The dataset generated during and/or analyzed during the current study are not publicly available due to the data ownership policy of the institutions the authors belong but are available from the corresponding author on reasonable request.

References

  • Alvarez ME, Pennell RI, Meijer P, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  CAS  PubMed  Google Scholar 

  • Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi IY, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart RS, Setter TL, Gleadow RM, Kulakow P, Ferguson ME, Rounsley S, Rokhsar DS (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology 34:562–570

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin F, Palmquist J, Huang S, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano J, Guarro J, Gend J (2004) Molecular and morphological identification of Colletotrichum species of clinical interest. Journal of Clinical Microbiology 42:2450–2454

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences of the Unites States of America 102:3459–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors; star players for plant growth and development. Journal of Integrative Plant Biology 52:946–951

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Gao J, An Z, Huang H (2010) A rapid method for isolation of low-molecular-weight RNA from Arabidopsis using low salt concentration buffer. Integrative Journal of Plant Biology 1:e14

    Article  CAS  Google Scholar 

  • Choi J, Kim K, Jeon J, Wu J, Song H, Asiegbu FO, Lee Y (2014) funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi. BMC Genomics 15:514

    Article  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Research 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daudi A, O’Brien JA (2012) Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-protocol 2:e263

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15

    Google Scholar 

  • Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somervilles SC, Voigt CA (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiology 161:1433–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X, Kang Z (2014) The target gene of tae-miR164, a novel NAC transcription factor from the NAM family, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology 15:284–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fokunang CN, Akem CN, Ikotun T, Dixon AGO, Tembe EA (2000) Role of the insect vector, Pseudotheraptus devastans, in cassava anthracnose disease development. European Journal of Plant Pathology 106:319–237

    Article  Google Scholar 

  • Fokunang CN, Dixon AGO, Ikotun T, Tembe EA, Akem CN, Asiedu R (2001) Anthracnose: an economic disease of cassava in Africa. Pakistan Journal of Biological Science 4:920–925

    Article  Google Scholar 

  • Gacek-Matthews A, Berger H, Sasaki T, Wittstein K, Gruber C, Lewis ZA, Strauss J (2016) KdmB, a jumonji histone H3 demethylase, regulates genome-wide H3K4 trimethylation and is required for normal induction of secondary metabolism in Aspergillus nidulans. PLoS Genetics 12:e1006222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gundersen GG, Worman HJ (2013) Nuclear positioning. Cell 152:1376–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta OP, Sharma P, Gupta RK, Sharma I (2014) Current status on role of miRNAs during plant-fungus interaction. Physiological and Molecular Plant Pathology 85:1–7

    Article  CAS  Google Scholar 

  • Hagen I, Yanagida M (1995) The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. Journal of Cell Biology 129:1033–1047

    Article  Google Scholar 

  • Hahn SK, Ikotun T, Theberge RL, Swennen R (1989) Major economic diseases of cassava, plantains and cooking starchy bananas in Africa. Tropical Agricultural Research Series 22:106–112

    Google Scholar 

  • Hou J, Feng H, Chang H, Liu Y, Li G, Yang S, Sun C, Zhang M, Yuan Y, Sun J, Zhu-Salzman K, Zhang H, Qin Q (2020) The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. New Phytologist 225:930–947

    Article  CAS  PubMed  Google Scholar 

  • Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, Carbajo M, Chakiachvili M, Christensen M, Cummins C, Cuzick A, Davis P, Fexova S, Gall A, George N, Gil L, Gupta P, Hammond-Kosack KE, Haskell E, Hunt SE, Jaiswal P, Janacek SH, Kersey PJ, Langridge N, Maheswari U, Maurel T, McDowall MD, Moore B, Muffato M, Naamati G, Naithani S, Olson A, Papatheodorou I, Patricio M, Paulini M, Pedro H, Perry E, Preece J, Rosello M, Russell M, Sitnik V, Staines DM, Stein J, Tello-Ruiz MK, Trevanion ST, Urban M, Wei S, Ware D, Williams G, Yates AD, Flicek P (2020) Ensembl Genomes 2020-enabling non-vertebrate genomic research. Nucleic Acids Research 48:D689–D695

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Lei Y, Liu J, Hao M, Zhang Z, Tang Y, Chen A, Wu J (2020) The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia. Plant Science 293:110438

    Article  CAS  PubMed  Google Scholar 

  • Iwakawa H, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends in Cell Biology 25:651–665

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Shim SH (2019) The fungus Colletotrichum as a source for bioactive secondary metabolites. Archives of Pharmacal Research 42:735–753

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus flower meristem identity gene SQUAMOSA. Molecular and General Genetics 250:7–16

    CAS  PubMed  Google Scholar 

  • Klemm E, Ninnemann H (1978) Correlation between absorbance changes and a physiological response induced by blue light in Neurospora crassa. Photochemistry and Photobiology 28:227–230

    Article  Google Scholar 

  • Kunkeaw S, Worapun J, Smith DR, Triwitayakorn K (2010) An in vitro detached leaf assay for pre-screening resistance to anthracnose disease in cassava (Manihot esculenta Crantz). Australasian Plant Pathology 39:547–550

    Article  Google Scholar 

  • Lee SC, Hwang BK (2005) Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221:790–800

    Article  CAS  PubMed  Google Scholar 

  • Lertpanyasampatha M, Viboonjun U, Kongsawadworakul P, Chrestin H, Narangajavana J (2014) Differential expression of microRNAs and their targets reveals a possible dual role in physiological bark disorder in rubber tree. Journal of Plant Physiology 171:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Meng X, Shan L, He P (2016) Transcriptional regulation of pattern-triggered immunity in plants. Cell Host & Microbe 19:641–650

    Article  CAS  Google Scholar 

  • Liu Y, He Q, Cheng P (2003) Photoreception in Neurospora: a tale of two White Collar proteins. Cellular and Molecular Life Sciences 60:2131–2138

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Shi Z, Zhang X, Wang M, Zhang L, Zheng K, Liu J, Hu X, Di C, Qian Q, He Z, Yng D (2019) Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nature Plants 5:389–400

    Article  CAS  PubMed  Google Scholar 

  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions 24:183–193

    Article  CAS  PubMed  Google Scholar 

  • Mahto BK, Singh A, Pareek M, Rajam MV, Dhar-Ray S, Reddy PM (2020) Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato. Plant Molecular Biology 104:381–395

    Article  CAS  PubMed  Google Scholar 

  • Malone CJ, Fixsen WD, Moritz R, Han M (1999) UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126:3171–3181

    Article  CAS  PubMed  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiology and Molecular Biology Reviews 61:17–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum EJ, Anjanappa RB, Gruissem W (2017) Tacking agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology 38:50–58

    Article  PubMed  Google Scholar 

  • Moraga J, Gomes W, Pinedo C, Cantoral JM, Hanson JR, Carbu M, Garrido C, Durán-Patrón R, Collada IG (2019) The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews 18:215–239

    Article  CAS  Google Scholar 

  • Nakashima J, Laosinchai W, Cui X, Brown RM (2003) New insight into the mechanism of cellulose and callose biosynthesis; protease may regulate callose biosynthesis upon wounding. Cellulose 10:369–389

    Article  CAS  Google Scholar 

  • Nedukha OM (2015) Callose: localization, functions, and synthesis in plant cells. Cytology and Genetics 49:49–57

    Article  Google Scholar 

  • O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779

    Article  PubMed  CAS  Google Scholar 

  • Owolade OF, Dixon AGO, Adeoti AA, Osunlaja SO (2005) Sources of resistance to cassava anthracnose disease. African Journal of Biotechnology 4:570–572

    Google Scholar 

  • Panwar SL, Moye-Rowley WS (2006) Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. Journal of Biological Chemistry 281:6376–6384

    CAS  PubMed  Google Scholar 

  • Perfect SE, Hughes HB, O’Connell RJ, Green JR (1999) Colletotrichum: a model genus for studies on pathology and fungal-plant interactions. Fungal Genetics and Biology 27:186–198

    Article  CAS  PubMed  Google Scholar 

  • Perino EHB, Glienke C, Silva AO, Deising HB (2020) Molecular characterization of the purine degradation pathways genes ALA1 and URE1 of the maize anthracnose fungus Colletotrichum graminicola identified urease as a novel target for plant disease control. Phytopathology 110:1530–1540

    Article  CAS  Google Scholar 

  • Pinweha N, Asvarak T, Viboonjun U, Narangajavana J (2015) Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. Journal of Plant Physiology 174:26–35

    Article  CAS  PubMed  Google Scholar 

  • Piršelová B, Matušíková I (2013) Callose: the plant cell wall polysaccharide with multiple biological functions. Acta Physiologiae Plantarum 35:635–644

    Article  CAS  Google Scholar 

  • Riddell RW (1950) Permanent stained mycological preparations obtained by slide culture. Mycologia 42:265–270

    Article  Google Scholar 

  • Saelim L, Phansiri S, Suksangpanomrung M, Netrphan S, Narangajavana J (2009) Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Plant Cell Reports 28:445–455

    Article  CAS  PubMed  Google Scholar 

  • Scalschi L, Llorens E, Camañes G, Pastor V, Fernández-Crespo E, Flors V, García-Agustín P, Vicedo B (2015) Quantification of callose deposition in plant leaves. Bio-protocol 5:e1610

    Article  Google Scholar 

  • Schjoerring JK, Husted S, Mack G, Mattsson M (2002) The regulation of ammonium translation in plants. Journal of Experimental Botany 53:883–890

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Solomon PS, Oliver RP (2001) The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta 213:241–249

    Article  CAS  PubMed  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible W-R, Baurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetyuk O, Benning UF, Hoffmann-Benning S (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated method. Journal of Visualized Experiments 80:e51111

    Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Research 40:e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valle EM, Boggio SB, Heldt HW (1998) Free amino acid composition of phloem sap and growing fruit of Lycopersicon esculentum. Plant and Cell Physiology 39:458–461

    Article  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker SE, Lorsch J (2013) RNA purification - precipitation methods. Methods in Enzymology 530:337–343

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Weiberg A, Lin F, Thomma BPHJ, Huang H, Jin H (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants 2:16151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Sun Y, Song N, Zhao M, Liu R, Feng H, Wang X, Kang Z (2017) Puccinia striiformis f. sp. tritici microRNA-like RNA1 (Pst-milR1), and important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytologist 215:338–350

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xia Y, Lin S et al (2018) Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Plant Journal 95:584–597

    Article  CAS  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Chen H, Curtis C, Fu ZQ (2014) Go in for the kill: how plants deploy effector-triggered immunity to combat pathogens. Virulence 5:710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Hong G, Li L, Zhang X, Kong Y, Sun Z, Li J, Chen J, He Y (2019) miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana. Phytopathology 109:612–642

    Article  Google Scholar 

  • Yu N, Niu Q, Ng K, Chua N (2015) The role of miR156/SPLs modules in Arabidopsis lateral root development. Plant Journal 83:673–685

    Article  CAS  Google Scholar 

  • Zhang T, Zhao Y, Zhao J, Wang S, Jin Y, Chen Z, Fang Y, Hua C, Ding S, Guo H (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants 2:16153

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T (2017) Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease. Frontiers in Plant Science 8:526

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li Y, Zheng Y, Wang H, Yang X, Chen J, Zhou S, Wang L, Li X, Ma X, Zhao J, Pu M, Feng H, Fan J, Zhang J, Huang Y, Wang W (2020) Expression a target mimic of miR156fhl-3p enhances rice blast disease resistance without yield penalty by improving SPL14 expression. Frontiers in Genetics 11:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Zhou Y, Chen X (2017) New insight into inter-kingdom communication: horizontal transfer of mobile small RNAs. Frontiers in Microbiology 8:768

    Article  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Current Opinion in Plant Biology 8:353–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Center of Excellence on Agricultural Biotechnology, Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (AG-BIO/MHESI). A scholarship from the Thailand Graduate Institute of Science and Technology (TGIST), National Science and Technology Development Agency, Thailand, was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

JN conceived and designed experiments. NP conducted experiments. P. Sae-Lim analyzed the results. SN, JN, P. Sojikul, and UV discussed the results. SN wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Supatcharee Netrphan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40858_2022_503_MOESM1_ESM.doc

Supplementary file1 (DOC 569 KB) Recovery of fungal hyphae from the stems of CAD-infected HB60 and HN. After 4 days of the introduction of C. gloeosporioides f. sp. manihotis spore suspension to HB60 and HN planlets through the puncture wound (black arrow), the stems of CAD-infected plants were cut into pieces and labeled A to E depending on their location either above (A, B and C) or below (D, E and F) the infected point (A). The cut pieces of stems were then placed on PDA plates and incubated at 30°C for 5 days (B). Fungal growth was observed only from the stems of plants infected with C. gloeosporioides f. sp. manihotis but not from those exposed to sterile water (control).

Supplementary file2 (DOC 64 KB) List of primers used in this study

40858_2022_503_MOESM3_ESM.doc

Supplementary file3 (DOC 216 KB) Specificity of the primers used in qRT-PCR. Each experiment was performed in triplicate. Based on the melting or dissociation curves, amplification of the genes of interest with selected primer pairs yielded only a single amplicon.

40858_2022_503_MOESM4_ESM.doc

Supplementary file4 (DOC 398 KB) Schematic maps of putative cis-acting elements identified by in silico analysis of the 3-kb upstream sequence of seven miRNA gene families and their target genes in cassava. Positions are with respect to the first base of the translation start site (ATG).

40858_2022_503_MOESM5_ESM.xlsx

Supplementary file5 (XLSX 16 KB) Radial growth of C. gloeosporioides f. sp. manihotis on PDA plates spread with various types of cassava phloem exudates

40858_2022_503_MOESM6_ESM.doc

Supplementary file6 (DOC 62 KB) Mapping of mes-MIR156 and mes-MIR164 with predicted target transcripts of C. gloeosporioides Cg-14 (GCA_000446055). The mes-MIR156 and mes-MIR164-guided cleavage sites were predicted after the 10th position of the miRNA 5´ end (arrows). Watson-Crick pairing (:) and wobble pairing (.) are indicated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinweha, N., Netrphan, S., Sojikul, P. et al. Cross-kingdom microRNA transfer for the control of the anthracnose disease in cassava. Trop. plant pathol. 47, 362–377 (2022). https://doi.org/10.1007/s40858-022-00503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-022-00503-2

Keywords

Navigation