Skip to main content
Log in

Delaying harvest for naturally drying maize grain increases the risk of kernel rot and fumonisin contamination

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Artificial drying, although costly, ensures a safe storage and preserves post-harvest grain quality. Alternatively, a more cost-effective measure is to delay harvest to promote natural drying, but this management may increase the risk of mycotoxigenic ear rot fungi contamination. The objective was to evaluate the effect of increasing maize harvest delay on fungal disease and fumonisin levels. Three maize hybrids (BRS1035, Attack and DKB390 YG) were sown in the field to study the effect of five harvest delays (15, 30, 45, 60 and 75 days) after the optimum date (18% grain moisture). There was a significant trend of increasing the incidence of kernel rot and total fumonisins in the grains when delaying harvest, but fungal incidence and mycotoxin contamination varied with the hybrid. The main fungi detected in the grain samples were Fusarium verticillioides and Stenocarpella maydis. The hybrid DKB390 YG showed significantly lower incidence of F. verticillioides contamination and lower fumonisin accumulation in the grains than the other hybrids. The hybrid Attack was the least susceptible to kernel rot incidence. Our data shows that delaying harvest for minimizing drying costs may increase the risk of mycotoxin contamination in maize in the tropics of Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves WM, Faroni LRA, Corrêa PC, Queiroz DM, Teixeira MM (2001) Influência dos teores de umidade de colheita na qualidade do milho (Zea mays L.) durante o armazenamento. Revista Brasileira de Armazenamento 26:40–45

    Google Scholar 

  • Arino A, Juan T, Estopanan G, Gonzalez-Cabo JF (2007) Natural occurrence of Fusarium species, fumonisin production by toxigenic strains, and concentrations of fumonisins B1 and B2 in conventional and organic maize grown in Spain. Journal of Food Protection 70:151–156

    Article  CAS  PubMed  Google Scholar 

  • Bakan B, Melcion D, Richard-Molard D, Cahagnier B (2002) Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. Journal of Agricultural and Food Chemistry 50:728–731

    Article  CAS  PubMed  Google Scholar 

  • Blandino M, Reyneri A, Colombari G, Pietri A (2009) Comparison of integrated field programmes for the reduction of fumonisin contamination in maize kernels. Field Crops Research 111:284–289

    Article  Google Scholar 

  • Bowers E, Hellmich R, Munkvold G (2013) Vip3Aa and Cry1Ab proteins in maize reduce Fusarium ear rot and fumonisins by deterring kernel injury from multiple Lepidopteran pests. World Mycotoxin Journal 6:127–135

    Article  Google Scholar 

  • Bruns HA, Abbas HK (2004) Effects of harvest date on maize in the humid sub-tropical mid-South USA. Maydica 49:1–7

    Google Scholar 

  • Bush BJ, Carson ML, Cubeta MA, Hagler WM, Payne GA (2004) Infection and fumonisin production by Fusarium verticillioides in developing maize kernels. Phytopathology 94:88–93

    Article  CAS  PubMed  Google Scholar 

  • Butron A, Santiago R, Mansilla P, Pintos-Varela C, Ordas A, Malvar RA (2006) Maize (Zea mays L.) genetic factors for preventing fumonisin contamination. Journal of Agricultural and Food Chemistry 54:6113–6117

    Article  CAS  PubMed  Google Scholar 

  • Cao A, Santiago R, Ramos AJ, Marín S, Reid LM, Butrón A (2013) Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. International Journal of Food Microbiology 164:15–22

    Article  CAS  PubMed  Google Scholar 

  • Chulze SN, Ramirez ML, Farnochi MC, Pascale M, Visconti A, March G (1996) Fusarium and Fumonisin occurrence in Argentinian corn at different ear maturity stages. Journal of Agricultural and Food Chemistry 44:2797–2801

    Article  CAS  Google Scholar 

  • Cruz JC, Garcia JC, Filho IAP, Luciano BBP, Luciano RQ (2009) Caracterização dos sistemas de produção de milho para altas produtividades. Embrapa Milho e Sorgo. Circular Técnica 124:2009

    Google Scholar 

  • De la Campa R, Hooker DC, Miller JD, Schaafsma AW, Hammond BG (2005) Modelling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. Mycopathologia 159:539–552

    Article  PubMed  Google Scholar 

  • Dowd PF (2000) Indirect reduction of ear molds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions: utility and limitation. Journal of Economic Entomology 93:1669–1679

    Article  CAS  PubMed  Google Scholar 

  • Fandohan P, Gnonlonfin B, Hell K, Marasas WF, Wingfield MJ (2005) Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. International Journal of Food Microbiology 99:173–183

    Article  CAS  PubMed  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35:1039–1042

    Article  Google Scholar 

  • Ferreira LVH, Omori AM, Bordini JG, Hirozawa MT, Hirooka EY, Ono EYS (2016) Efeito do sistema de plantio e da fertilização nitrogenada na contaminação de milho por fumonisinas. Biosaúde 18:27–36

    Google Scholar 

  • Folcher L, Delos M, Jarry M, Weissenberger A, Eychenne N, Regnault-Roger C (2010) Lower mycotoxin levels in Bt maize grain. Agronomy for Sustainable Development 30:711–719

    Article  CAS  Google Scholar 

  • Guo C, Liu Y, Jiang Y, Li R, Pang M, Liu Y, Dong J (2016) Fusarium species identification and fumonisin production in maize kernels from Shandong Province, China, from 2012 to 2014. Food Additives & Contaminants 9:203–209

    Article  CAS  Google Scholar 

  • Headrick JM, Pataky JK, Juvik JA (1990) Relationships among carbohydrate content of kernels, condition of silks after pollination, and the response of sweet corn inbred lines to infection of kernels by Fusarium moniliforme. Phytopathology 80:487–494

    Article  CAS  Google Scholar 

  • Hermanns G, Pinto FT, Kitazawa SE, Noll IB (2006) Fungos e fumonisinas no período pré-colheita do milho. Ciência e Tecnologia de Alimentos 26:7–10

    Article  CAS  Google Scholar 

  • Herrera M, Conchello P, Juan T, Estopañán G, Herrera A, Ariño A (2010) Fumonisins concentrations in maize as affected by physico-chemical, environmental and agronomical conditions. Maydica 5:121–126

    Google Scholar 

  • Jackson L, Jablonski J (2004) Fumonisins. In: Magan N, Olsen M (eds) Mycotoxins in food. Wood-head Publishing Ltd. and CRC Press LLC, Cambridge, pp 384–422

    Google Scholar 

  • Johnson LA (2000) Corn: the major cereal of the Americas. In: Kulp K, Ponte JG (eds) Handbook of cereal science and technology. Mercel Dekker, New York, pp 33–34

    Google Scholar 

  • Kaaya AN, Warren HL, Kyamanywa S, Kyamuhangire W (2005) The effect of delayed harvest on moisture content, insect damage, moulds and aflatoxin contamination of maize in Mayuge district of Uganda. Journal of the Science of Food and Agriculture 85:2595–2599

    Article  CAS  Google Scholar 

  • Kamala A, Kimanya M, Haesaert G, Tiisekwa B, Madege R, Degraeve S, Cyprian C, Meulenaer B (2016) Local post-harvest practices associated with aflatoxin and fumonisin contamination of maize in three agro ecological zones of Tanzania. Food Additives and Contaminants 33:551–559

    Article  CAS  PubMed  Google Scholar 

  • Kedera CJ, Leslie JF, Claflin LE (1992) Systemic infection of corn by Fusarium moniliforme. Phytopathology 82:1138

    Google Scholar 

  • King S (1981) Time of infection of maize kernels by Fusarium moniliforme and Cephalosporium acremonium. Phytopathology 71:796–799

    Article  Google Scholar 

  • Lanza FE, Zambolim L, da Costa RV, da Silva DD, Queiroz VAV, Parreira DF, Mendes SM, Souza AGC, Cota LV (2016) Aplicação foliar de fungicidas e incidência de grãos ardidos e fumonisinas totais em milho. Pesquisa Agropecuária Brasileira 51:638–646

    Article  Google Scholar 

  • Lanza FE, Zambolim L, Costa RV, Figueiredo JEF, Silva DD, Queiroz VAV, Guimarães EA, Cota LV (2017) Symptomatological aspects associated with fungal incidence and fumonisin levels in corn kernels. Tropical Plant Pathology 42:304–308

    Article  Google Scholar 

  • Lauren DR, Smith WA, Di Menna ME (2007) Influence of harvest date and hybrid on the mycotoxin content of maize (Zea mays) grain grown in New Zealand. New Zealand Journal of Crop and Horticultural Science 35:331–340

    Article  CAS  Google Scholar 

  • Lerda D (2017) Fumonisins in foods from Cordoba (Argentina), presence: mini review. Toxicology Open Access 3:125

    Article  Google Scholar 

  • Leslie JF, Summerell BA, Bullock S (2006) The Fusarium laboratory manual. Wiley-Blackwell, Oxford, p 388

    Book  Google Scholar 

  • Marasas WF (2001) Discovery and occurrence of the Fumonisins: a historical perspective. Environmental Health Perspectives 109:239–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marques OJ, Vidigal Filho OS, Dalpasquale VA, Scapim CA, Pricinotto LF, Machinski Junior M (2009) Incidência fúngica e contaminações por micotoxinas em grãos de híbridos comerciais de milho em função da umidade de colheita. Acta Scientiarum Agronomy 31:667–675

    Article  CAS  Google Scholar 

  • Miller JD (1994) Epidemiology of Fusarium ear diseases of cereals. In: Miller JD, Trenholm HL (eds) Mycotoxins in grain. Compounds other than aflatoxin. Eagan Press, St Paul, pp 19–36

    Google Scholar 

  • Munkvold GP, McGee DC, Carlton WM (1997) Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology 87:209–217

    Article  CAS  PubMed  Google Scholar 

  • Munkvold GP, Hellmich RL, Rice LG (1999) Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Disease 83:130–138

    Article  Google Scholar 

  • Nelson PE, Plattner RD, Shackelford DD, Desjardins AE (1991) Production of fumonisins by Fusarium moniliforme strains from various substrates and geographic areas. Applied and Environmental Microbiology 57:2410–2412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons MW, Munkvold GP (2010) Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize. Food Additives & Contaminants 27:591–607

    Article  CAS  Google Scholar 

  • Pascale MA, Visconti A, Pronczuk M, Wisniewska H, Chelkowski J (1997) Accumulation of fumonisins in maize hybrids inoculated under field conditions with Fusarium moniliforme Sheldon. Journal of the Science of Food and Agriculture 74:1–6

    Article  CAS  Google Scholar 

  • Samapundo S, De Meulenaer B, De Muer N, Debevere J, Devlieghere F (2006) Influence of experimental parameters on the fluorescence response and recovery of the high-performance liquid chromatography analysis of Fumonisin B1. Journal of Chromatography 1109:312–316

    Article  CAS  PubMed  Google Scholar 

  • Santiago R, Cao A, Butrón A (2015) Genetic factors involved in fumonisin accumulation in maize kernels and their implications in maize agronomic management and breeding. Toxins 7:3267–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santin JA, Reis EM, Matsumura ATS, Moraes MG (2004) Efeito do retardamento da colheita de milho na incidência de grãos ardidos e de fungos patogênicos. Revista Brasileira de Milho e Sorgo 3:182–192

    Article  Google Scholar 

  • Shelby RA, White DG, Bauske EM (1994) Differential fumonisin production in maize hybrids. Plant Disease 78:582–584

    Article  CAS  Google Scholar 

  • Sobek EA, Munkvold GP (1999) European corn borer (Lepidoptera: Pyralidae) larvae as vectors of Fusarium moniliforme, causing kernel rot and symptomless infection of maize kernels. Ecological Entomology 92:503–509

    Article  Google Scholar 

  • Sutton BC (1980) The coelomycetes. Commonwealth Mycological Institute, Kew, Surrey, England. 696p

  • Torelli E, Firrao G, Bianchi G, Saccardo F, Locci R (2012) The influence of local factors on the prediction of fumonisin contamination in maize. Journal of the Science of Food and Agriculture 92:1808–1814

    Article  CAS  PubMed  Google Scholar 

  • Warfield CY, Gilchrist DG (1999) Influence of kernel age on Fumonisin B1 production in maize by Fusarium moniliforme. Environmental Microbiology 65:2853

    CAS  Google Scholar 

  • Yılmaz N, Tuncel NB (2010) An alternative strategy for corn drying (Zea mays) resulted in both energy savings and reduction of fumonisins B1 and B2 contamination. International Journal of Food Science & Technology 45:621–628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Embrapa Maize and Sorghum and National Council for Scientific and Technological Development (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Véras da Costa.

Additional information

Section Editor: Raul Allende-Mollar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, R.V., Queiroz, V.A.V., Cota, L.V. et al. Delaying harvest for naturally drying maize grain increases the risk of kernel rot and fumonisin contamination. Trop. plant pathol. 43, 452–459 (2018). https://doi.org/10.1007/s40858-018-0234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-018-0234-0

Keywords

Navigation