Assessment of antimicrobial potential of iron on phytopathogenic isolates of Nocardia sp. and their effect on tobacco false broomrape symptom expression

  • Yunior Miguel Morán-Gómez
  • Abdón Joaquín Trémols-González
  • Rosario Domínguez-Larrinaga
  • María Guadalupe Carrillo-Benites
  • José Ramón Cabrera-Alfonso
Original Article


Tobacco crop is affected by false broomrape caused by phytopathogenic isolates belonging to the Nocardia genus, present in the soil. Both persistence and incidence levels of its causal agent are lower in soils with red to reddish tonalities. These tones are associated with the presence of oxidized iron forms. The aim of this research was to assess the antimicrobial potential of different chemical forms of iron on phytopathogenic isolates of Nocardia sp., and evaluate its effect on the symptom expression of false broomrape in tobacco plants. Susceptibility to iron salts of four isolates was assessed in vitro by the minimal inhibitory concentration test. In in vivo experiments, soil inoculated with phytopathogenic isolates was treated with FeSO4.7H2O and symptom expression of false broomrape was evaluated as the average degree of affection, which considers grades of growth of tumours and buds developed on roots. We found that phytopathogenic isolates from four tobacco areas of Cuba with high incidence of the disease showed in vitro susceptibility to free iron in its oxidized forms of Fe+2 and Fe+3. It was shown that the application of 1000 ppm of FeSO4.7H2O on the roots of tobacco seedlings and in the soil where they were transplanted reduces expression of the symptoms of false broomrape.


Nicotiana tabacum Bacteria FeSO4.7H2Iron toxicity Minimum inhibitory concentration test 



Our thanks to Dr. Nóra Mendler-Drienyovszki (Research Institute of Nyíregyháza, University of Debrecen, Hungary) and to Dr. Vivian Marlene Izaguirre-García (University of San Carlos, Guatemala) for their special contribution as critical reviewers of the manuscript.


  1. Acevedo-Sandoval O, Ortiz-Hernández E, Cruz-Sánchez M, Cruz-Chávez E (2004) Papel de óxidos de hierro en suelos. Terra Latinoamericana 22:485–497Google Scholar
  2. Agrios G (2010) Fitopatología. 2a ed. Editorial Limusa SA, México CityGoogle Scholar
  3. Aitkenhead M, Coull M, Towers W, Hudson G, Black H (2013) Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland. Geoderma 200:99–107CrossRefGoogle Scholar
  4. Albano J, Merhaut D (2012) Influence of Fe-EDDS, Fe-EDTA, Fe-DTPA, Fe-EDDHA and FeSO4 on marigold growth and nutrition, and substrate and runoff chemistry. HortScience 47:93–97Google Scholar
  5. Badía D, Martí C, Palacio E, Sancho C, Poch R (2009) Soil evolution over the quaternary period in a semiarid climate (Segre river terraces, northeast, Spain). Catena 77:165–174CrossRefGoogle Scholar
  6. Bartáková I, Kummerová M, Mandl M, Pospisil M (2001) Phytotoxicity of iron in relation to its solubility conditions and the effect of ionic strength. Plant and Soil 235:45–51CrossRefGoogle Scholar
  7. Borowski E (2013) Uptake and transport of iron ions (Fe+2, Fe+3) supplied to roots or leaves in spinach (Spinacia oleracea L.) plants growing under different light conditions. Acta Agrobotanica 66:45–52CrossRefGoogle Scholar
  8. Broschat T, Moore K (2004) Phytotoxicity of several iron fertilizers and their effects on Fe, Mn, Zn, Cu, and P content of African marigolds and zonal geraniums. HortScience 39:595–598Google Scholar
  9. Brown-Elliott B, Killingley J, Vasireddy S, Bridge L, Wallace R (2016) In vitro comparison of ertapenem, meropenem, and imipenem against isolates of rapidly growing mycobacteria and Nocardia by use of broth microdilution and Etest. Journal of Clinical Microbiology 54:1586–1592CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buhr T, Sobota L, MacKie R, Slaterbeck A (2005) Decontamination of biological microbes using metal cations suspended in ethanol. U.S. patent application no 11/250691Google Scholar
  11. Cadahía LC (2005) Fertirrigación: cultivos hortícolas, frutales y ornamentales. Mundi-Prensa, MadridGoogle Scholar
  12. Chang H, Lai J, Wang J (2016) The minimum inhibitory concentration of antibiotics against Nocardia seriolae isolation from diseased fish in Taiwan. Taiwan Veterinary Journal 42:81–84CrossRefGoogle Scholar
  13. Expert D, Franza T, Dellagi A (2012) Iron in plant–pathogen interactions. In: Expert D, O’Brian MR (eds) Molecular aspects of iron metabolism in pathogenic and symbiotic plant–microbe associations. SpringerBriefs in Molecular Science. Springer, DordrechtGoogle Scholar
  14. Fones H, Preston GM (2013) The impact of transition metals on bacterial plant disease. FEMS Microbiology Reviews 37:495–519CrossRefPubMedGoogle Scholar
  15. Hata T, Maruoka T (2001) Bactericide containing iron ions. U.S. patent no 6296881Google Scholar
  16. Hernández A, Pérez-Jiménez JM, Bosch D, Castro N (2015) Clasificación de los suelos de Cuba 2015. Ediciones INCA, La HabanaGoogle Scholar
  17. IUSS Working Group WRB (2014) World reference base for soil resources 2014. World soil resources reports no. 106. FAO, RomeGoogle Scholar
  18. Kalantari N (2008) Evaluation of toxicity of iron, chromium and cadmium on Bacillus cereus growth. Iranian Journal of Basic Medical Sciences 10:222–228Google Scholar
  19. Kuswantoro H (2014) Relative growth rate of six soybean genotypes under iron toxicity condition. International Journal of Biology 6:11–17Google Scholar
  20. Lucas GB (1975) Diseases of tobacco. Biological Consulting Associates, RaleighGoogle Scholar
  21. Méndez R (1998) Característica, distribución y daños del falso Orobanche en el cultivo del tabaco. MSc Dissertation, Universidad Central de Las Villas "Marta Abreu", Villa ClaraGoogle Scholar
  22. Monzón L, Trémols AJ, Álvarez L, Villalón A, Chávez L (2015) Acumulación de cloro en respuesta a restricciones hídricas. Cuba Tabaco 16:3–8Google Scholar
  23. Morán YM, Chacón O, Córdoba-Selles MC, Domínguez R, Herrera Isla L, Borrás-Hidalgo O (2013) Identification and molecular characterization of Nocardia sp. as a new causal agent of tobacco false broomrape. Journal of Phytopathology 161:86–91CrossRefGoogle Scholar
  24. Morán YM, Pérez JL, Núñez A, Domínguez-Larrinaga R, Torrecilla G, Córdoba-Selles MC, Herrera-Isla L (2015a) Evaluación de la resistencia al falso Orobanche causado por Nocardia sp. en Nicotiana spp. Cultivos Tropicales 36:108–116Google Scholar
  25. Morán YM, Trémols AJ, Domínguez-Larrinaga R, Carballo RM (2015b) Relación entre las propiedades físicas y químicas de los suelos y la manifestación del "falso Orobanche" en Cuba. Cuba Tabaco 16:27–41Google Scholar
  26. Mulu A, Tessema B, Derbie F (2004) In vitro assessment of the antimicrobial potential of honey on common human pathogens. Ethiopian Journal of Health Development 18:107–111Google Scholar
  27. Oyarzúa-Alarcón P, Sossa K, Contreras D, Urrutia H, Nocker A (2014) Antimicrobial properties of magnesium chloride at low pH in the presence of anionic bases. Magnesium Research 27:57–68PubMedGoogle Scholar
  28. Prescott LM, Harley JP, Klein DA (2009) Microbiología. 7a Ed. McGraw-Hill Interamericana de España SAU, MadridGoogle Scholar
  29. Rath KM, Maheshwari A, Bengtson P, Rousk J (2016) Comparative toxicity of salts to microbial processes in soil. Applied and Environmental Microbiology 82:2012–2020CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Reviews in Agricultural Science 3:1–24CrossRefGoogle Scholar
  31. Schaad NW, Jones JB, Chun W (2001) Laboratory guide for identification of plant pathogenic bacteria. APS Press, St PaulGoogle Scholar
  32. Sorokina EV, Yudina TP, Bubnov IA, Danilov VS (2013) Assessment of iron toxicity using a luminescent bacterial test with an Escherichia coli recombinant strain. Microbiology 82:439–444CrossRefGoogle Scholar
  33. SPSS Inc. (2009) PASW statistics for windows. Version 18.0. SPSS Inc., ChicagoGoogle Scholar
  34. Sutton S (2011) Measurement of microbial cells by optical density. Journal of Validation Technology 17:46–49Google Scholar
  35. Trémols AJ, Cánepa Y, Álvarez L (2013) Efecto del fungicida clorotalonilo sobre la acumulación de cloro en las hojas de tabaco Negro var. Corojo 99. Cuba Tabaco 14:67–69Google Scholar
  36. Umapriya R, Shrihari S (2010) Pathogen removal under the influence of iron. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 4:690–695Google Scholar
  37. Valdezate S, Garrido N, Carrasco G, Medina-Pascual M, Villalón P, Navarro A, Saéz-Nieto J (2016) Epidemiology and susceptibility to antimicrobial agents of the main Nocardia species in Spain. Journal of Antimicrobial Chemotherapy 72:754–761Google Scholar
  38. Zhao P, Zhang X, Du P, Li G, Li L, Li Z (2017) Susceptibility profiles of Nocardia spp. to antimicrobial and antituberculotic agents detected by a microplate Alamar Blue assay. Scientific Reports 7:43660CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zorzi P, Barbizzi S, Belli M, Ciceri G, Fajgelj A, Moore D, Sansone U, Van Der Perk M (2005) Terminology in soil sampling (IUPAC recommendations 2005). Pure and Applied Chemistry 77:827–884CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Fitopatologia 2018

Authors and Affiliations

  • Yunior Miguel Morán-Gómez
    • 1
    • 2
  • Abdón Joaquín Trémols-González
    • 1
  • Rosario Domínguez-Larrinaga
    • 1
  • María Guadalupe Carrillo-Benites
    • 3
  • José Ramón Cabrera-Alfonso
    • 4
  1. 1.Instituto de Investigaciones del TabacoArtemisaCuba
  2. 2.Facultad de Ingeniería y Ciencias EmpresarialesUniversidad de ArtemisaArtemisaCuba
  3. 3.Colegio de PostgraduadosTexcocoMéxico
  4. 4.UCTB Estación Experimental San Juan y MartínezInstituto de Investigaciones del TabacoPinar del RíoCuba

Personalised recommendations