Skip to main content
Log in

Cowpea mild mottle virus (Carlavirus, Betaflexiviridae): a review

  • Review
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

In this review we describe and discuss the biology and aspects of infection of a pathogen, the RNA virus Cowpea mild mottle virus (CPMMV), that emerged as a problem in soybean and is re-emerging in common bean. The review takes a global perspective but has an emphasis on Brazilian soybean in which CPMMV causes stem necrosis. Since its first description in Ghana in 1973, CPMMV has spread across the world and, although it principally infects Fabaceae, it is also able to infect hosts from Solanaceae and Lamiaceae. While the problem in soybean is being tackled with resistant varieties, CPMMV is re-emerging in genetically modified common bean. To limit the impact of CPMMV and combat future outbreaks, it is necessary to understand the ecological and evolutionary factors that influence its emergence. We identify surveillance as a key defense against CPMMV, as CPMMV is transmitted non-persistently by the whitefly Bemisia tabaci, there is the possibility of seed transmission and the virus is able to cause asymptomatic infections. We discuss the potential for development of resistant crop lines and identify key areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams M, Kreuze J (2016) Revision of family Betaflexiviridae, order Tymovirales. ICTV online. Avaliable at: www.ictvonline.org/. Accessed 10 Dec 2016

  • Almeida AMR (2008) Viroses da soja no Brasil: sintomas, etiologia, controle. Série Documentos, vol 306. Embrapa, Londrina

  • Almeida AMR, Piuga FF, Kitajima EW, Gaspar JO, Valentin N, Benato LC, Marin SRR, Bineck E, Belintani P, Nunes Junior J, Hoffmann L, Meyer MC (2003) Necrose da haste da soja. Série Documentos, vol 221. Embrapa, Londrina

  • Almeida AMR, Piuga FF, Marin SRR, Kitajima EW, Gaspar JO, Oliveira TG, Moraes TG (2005) Detection and partial characterization of a carlavirus causing stem necrosis of soybean in Brazil. Fitopatol Bras 30:191–194

    Article  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • Aragão FJL, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088

    Article  PubMed  Google Scholar 

  • Aragão FJL, Rech EL (2001) Transgenic common bean (Phaseolus vulgaris). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry Vol. 47 - Transgenic crops II. Springer, Berlin, pp 269–283

  • Aragão FJL, Faria JC (2010) Proposta de liberação comercial de feijoeiro geneticamente 723 modificado resistente ao mosaico dourado. Evento Embrapa 5.1 (EMB-PV051-1) CTNBio, Avaliable on: ctnbio.mcti.gov.br/liberacaocomercial#/liberacao-comercial/consultarprocesso

  • Aragão FJL, Ribeiro SG, Barros LMG, Brasileiro ACM, Maxwell DP, Rech EL, Faria JC (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breed 4:491–499

    Article  Google Scholar 

  • Barbosa LD, Marubayashi JM, De Marchi BR, Yuki VA, Pavan MA, Moriones E, Navas-Castillo J, Krause-Sakate R (2014) Indigenous American species of the Bemisia tabaci complex are still widespread in the Americas. Pest Manag Sci 70:1440–1445

    Article  CAS  Google Scholar 

  • Barbosa LD, Yuki VA, Marubayashi JM, De Marchi BR, Perini FL, Pavan MA, De Barros DR, Ghanim M, Moriones E, Navas-Castillo J, Krause-Sakate R (2015) First report of Bemisia tabaci Mediterranean (Q biotype) species in Brazil. Pest Manag Sci 71:501–504

    Article  CAS  Google Scholar 

  • Bedhomme S, Hillung J, Elena SF (2014) Emerging viruses: why are they not jacks of all trades? Curr Opin Virol 10:1–6

    Article  PubMed  Google Scholar 

  • Bonfim K, Faria JC, Nogueira E, Mendes EA, Aragao FJL (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact 20:717–726

    Article  CAS  PubMed  Google Scholar 

  • Brakta A, Thakur PD, Handa A (2013) First report of Cowpea mild mottle virus in cowpea and French bean in Taiwan. Plant Dis 97:1001–1001

    Article  Google Scholar 

  • Brito M, Fernandez-Rodriguez T, Garrido MJ, Mejias A, Romano M, Marys E (2012) First report of Cowpea mild mottle carlavirus on yardlong bean (Vigna unguiculata subsp. sesquipedalis) in Venezuela. Viruses 4:3804–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brizola DC, Dias LA, Silva JA, Policam MPRM, Almeida AMR (2015) Avaliação da reação de linhagens de soja ao vírus do mosaico comum da soja (Soybean mosaic virus) e ao vírus causador da necrose da haste (Cowpea mild mottle virus). Série Documentos, vol 359. Embrapa, Londrina, pp 80–87

  • Brown JK (2000) Molecular markers for the identification and global tracking of whitefly vector-begomovirus complexes. Virus Res 71:233–260

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Rodrigues JCV (2014) Recovery plan Cowpea mild mottle virus Carlavirus: Betaflexiviridae; order Tymovirales. 1–24. Avaliable at: www.ars.usda.gov/. Accessed 4 Dec 2016

  • Brunt AA, Kenten RH (1973) Cowpea mild mottle, a newly recognized virus infecting cowpeas (Vigna unguiculata) in Ghana. Ann Appl Biol 74:67–74

    Article  CAS  PubMed  Google Scholar 

  • Brunt AA, Phillips S (1981) Fuzzy vein, a disease of tomato (Lycopersicon esculentum) in western Nigeria induced by Cowpea mild mottle virus. Trop Agric 58:177–180

    Google Scholar 

  • Brunt AA, Atkey PT, Woods RD (1983) Intracellular occurrence of cowpea mild mottle virus in 2 unrelated plant species. Intervirology 20:137–142

    Article  CAS  PubMed  Google Scholar 

  • Carvalho SLD, Da Silva FN, Zanardo LG, Almeida AMR, Zerbini FM, Carvalho CM (2013) Production of polyclonal antiserum against Cowpea mild mottle virus coat protein and its application in virus detection. Trop Plant Pathol 38:49–54

    Article  Google Scholar 

  • Celli MG, Perotto MC, Merino MC, Nome CFD, Flores CR, Conci VC (2016) First report of Cowpea mild mottle virus in chia (Salvia hispanica). Crop Prot 89:1–5

  • Clark MF, Lister RM, Bar-Joseph M (1986) ELISA techniques. In: Weissbach A, Weissbach HW (eds) Methods in enzymology, vol 118. Academic Press, London, pp 742–766

  • Cohen S, Antignus Y (1982) A non-circulative whitefly-borne virus affecting tomatoes in Israel. Phytoparasitica 10:101–109

    Article  Google Scholar 

  • Costa AS, Gaspar JO, Vega J (1983) Mosaico angular do feijão jalo causado por um carlavírus transmitido pela mosca branca Bemisia tabaci. Fitopatol Bras 8:325–327

    Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  PubMed  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial Cytochrome Oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Article  Google Scholar 

  • Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Philos Trans R Soc B: Biol Sci 356:1001–1012

    Article  CAS  Google Scholar 

  • Durbern J, Dollet M (1981) Groundnut crinkle virus, a new member of Carlavirus group. Phytopathology 101:337–347

    Article  Google Scholar 

  • El-Hassan SM, Naidu RA, Ahmed AH, Murant AF (1997) A serious disease of groundnut caused by Cowpea mild mottle virus in the Sudan. J Phytopathol 145:301–304

    Article  Google Scholar 

  • Embrapa (2014) Soja em números (safra 2013/2014). Available at: https://www.embrapa.br/soja/cultivos/soja1/dados-economicos. Accessed on 6 Jan 2017

  • Faria JC, Albino MMC, Dias BBA, Cançado LJ, Cunha NB, Silva LM, Viana GR, Aragão FJL (2006) Partial resistance to Bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris L.) line expressing a mutated rep gene. Plant Sci 171:565–571

    Article  CAS  Google Scholar 

  • Faria JC, Aragao FJL, Souza TLPO, Quintela ED, Kitajima EW, Ribeiro SG (2016) Golden mosaic of common beans in Brazil: management with a transgenic approach. APS Features. doi:10.1094/APSFeature-2016-10

  • Fauquet C, Thouvenel JC (1987) Plant viral diseases in the Ivory Coast. ORSTOM, Paris

    Google Scholar 

  • Fiallos FRG (2010) Doenças causadas por virus na cultura de feijoeiro (Phaseolus vulgaris L.). Cienc Tecnol 3:1–6

  • Fortuner R, Fauquet C, Lourd M (1979) Diseases of the winged bean in Ivory Coast. Plant Dis Rep 63:194–199

    Google Scholar 

  • Foster GD, Mills PR (1990a) Evidence for the role of subgenomic RNA species in the production of Helenium virus S coat protein during in vitro translation. Virus Res 17:61–69

    Article  CAS  Google Scholar 

  • Foster GD, Mills PR (1990b) Evidence for the role of subgenomic RNAs in the production of Potato virus S coat protein during in vitro translation. J Gen Virol 71:1247–1249

    Article  CAS  PubMed  Google Scholar 

  • Foster GD, Mills PR (1992) Translation of Potato virus S RNA in vitro: evidence of protein processing. Virus Genes 6:47–52

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Komatsu K, Ayukawa Y, Matsuo Y, Hashimoto M, Netsu O, Teraoka T, Yamaji Y, Namba S, Arie T (2017) N-terminal region of cysteine-rich protein (CRP) in carlaviruses is involved in the determination of symptom types. Mol Plant Pathol. doi:10.1111/mpp.12513

  • Ghorbani S, Shahraeen N, Elahinia SA (2008) Serodiagnosis of cowpea (Vigna unguiculata) viruses in Guilan province, Iran. Iranian J Virol 1:28–31

    Google Scholar 

  • Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Ann Rev Virol 2:67–93

    Article  CAS  Google Scholar 

  • Henning AA, Almeida AMR, Godoy CV, Seixas CDS, Yorinori JT, Costamilan LM, Ferreira LP, Meyer MC, Soares RM, Dias WP (2014) Manual de identificação de doenças da soja. Série Documentos, vol 256. Embrapa, Londrina

  • Hirakuri MH, Lazzarotto PP (2014) O agronegócio da soja nos contextos mundial e brasileiro. Série Documentos, vol 349. Embrapa, Londrina

  • Iizuka N, Rajeshwari R, Reddy DVR, Goto T, Muniyappa V, Bharathan N, Ghanekar AM (1984) Natural occurrence of a strain of Cowpea mild mottle virus on groundnut (Arachis hypogaea) in India. J Phytopathol 109:245–253

    Article  Google Scholar 

  • Imam J, Singh PK, Shukla P (2016) Plant-microbe interactions in post-genomic era: perspectives and applications. Front Microbiol 7:1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwaki M (1986) Soybean crinkle leaf and cowpea mild mottle viruses. Trop Agric Res Ser 19:92–100

    Google Scholar 

  • Iwaki M, Thongmeearkom P, Prommin M, Honda Y, Hibi T (1982) Whitefly transmission and some properties of Cowpea mild mottle virus on soybean in Thailand. Plant Dis 66:365–368

    Article  Google Scholar 

  • Jeyanandarajah P, Brunt AA (1993) The natural occurrence, transmission, properties and possible affinities of Cowpea mild mottle virus. J Phytopathol 137:148–156

    Article  CAS  Google Scholar 

  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2011) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier-Academic Press, San Diego

  • Laguna IG, Arneodo JD, Rodriguez-Padina P, Fiorona M (2006) Cowpea mild mottle virus infecting soybean crops in northwestern Argentina. Fitopatol Bras 31:317

    Article  Google Scholar 

  • Lalic J, Cuevas JM, Elena SF (2011) Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genet 7:e1002378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence DM, Rozanov MN, Bradley IH (1995) Autocatalytic processing of the 223-KDa protein of blueberry scorch carlavirus by a papain-like proteinase. Virology 207:127–135

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Zhang RN, Xiang HY, Abouelnasr H, Li DW, Yu JL, Mcbeath JH, Han CG (2013) Discovery and characterization of a novel carlavirus infecting potatoes in China. PLoS One 8:e69255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima LHC, Campos L, Moretzsohn MC, Navia D, De Oliveira MRV (2002) Genetic diversity of Bemisia tabaci (Genn.) populations in Brazil revealed by RAPD markers. Genet Mol Biol 25:217–223

    Article  CAS  Google Scholar 

  • Lukhovitskaya NI, Ignatovich IV, Savenkov EI, Schiemann J, Morozov SY, Solovyev AG (2009) Role of the zinc-finger and basic motifs of chrysanthemum virus B p12 protein in nucleic acid binding, protein localization and induction of a hypersensitive response upon expression from a viral vector. J Gen Virol 90:723–733

    Article  CAS  PubMed  Google Scholar 

  • Lukhovitskaya NI, Solovieva AD, Boddeti SK, Thaduri S, Solovyev AG, Savenkov EI (2013) An RNA virus-encoded zinc-finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species. Plant Cell 25:960–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie DJ, Tremaine JH, Stacesmith R (1989) Organization and interviral homologies of the 3′-terminal portion of Potato virus S RNA. J Gen Virol 70:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Mansour A, Al-Musa A, Vetten HJ, Lesemann DE (1998) Properties of a Cowpea mild mottle virus (CPMMV) isolate from eggplant in Jordan and evidence for biological and serological differences between CPMMV isolates from leguminous and solanaceous hosts. J Phytopathol 146:539–547

    Article  Google Scholar 

  • Marubayashi JM, Yuki VA, Wutke EB (2010) Transmission of Cowpea mild mottle virus by Bemisia tabaci biotype B from plants of beans and soybean. Summa Phytopathol 36:158–160

    Article  Google Scholar 

  • Meehan BM, Mills PR (1991) Cell-free translation of Carnation latent virus RNA and analysis of virus-specific dsRNA. Virus Genes 5:175–181

    Article  CAS  PubMed  Google Scholar 

  • Menzel W, Winter S, Vetten HJ (2010) Complete nucleotide sequence of the type isolate of Cowpea mild mottle virus from Ghana. Arch Virol 155:2069–2073

    Article  CAS  PubMed  Google Scholar 

  • Milanesi DF, Zanardo LG, Faria JC, Carvalho CM (2015) Detection and whole genome sequencing of CPMMV in common bean resistant to BGMV from Paraná state. Virus Rev Res 20:212

    Google Scholar 

  • Mink GI, Keswani CL (1987) First report of Cowpea mild mottle virus on bean and mung bean in Tanzania. Plant Dis 71:557

    Article  Google Scholar 

  • Mituti T, Almeida AMR (2006) Tolerância ao Cowpea mild mottle virus e sua concentração relativa em soja. Série Documentos, vol 276. Embrapa, Londrina

  • Morales FJ (2006) History and current distribution of begomoviruses in Latin America. Adv Virus Res 67:127–162

  • Morales FJ, Jones PG (2004) The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res 100:57–65

    Article  CAS  PubMed  Google Scholar 

  • Mukoye B, Mangeni BC, Leitich RK, Wosula DW, Omayio DO, Nyamwamu PA, Arinaitwe W, Winter S, Abang MM, Were HK (2015) First report and biological characterization of Cowpea mild mottle virus (CPMMV) infecting groundnuts in western Kenya. J Agri-Food Appl Sci 3:1–5

    Google Scholar 

  • Munyappa V, Reddy DVR (1983) Transmission of Cowpea mild mottle virus by Bemisia tabaci in a nonpersistent manner. Plant Dis 67:391–393

    Article  Google Scholar 

  • Nagata T, Kitajima EW, Alves DMT, Cardoso JE, Inoue-Nagata AK, Oliveira MRV, Ávila AC (2003) Isolation of a novel carlavirus from melon in Brazil. Plant Pathol 52:797

  • Nagata T, Alves DMT, Inoue-Nagata AK, Tian T-Y, Kitajima EW, Cardoso JE, Ávila AC (2005) A novel melon flexivirus transmitted by whitefly. Arch Virol 150:379–387

  • Naidu RA, Gowda S, Satyanarayana T, Boyko V, Reddy AS, Dawson WO, Reddy DVR (1998) Evidence that whitefly-transmitted Cowpea mild mottle virus belongs to the genus Carlavirus. Arch Virol 143:769–780

    Article  CAS  PubMed  Google Scholar 

  • Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248

    Article  CAS  PubMed  Google Scholar 

  • Prado FG (2014) Effects of Cowpea mild mottle virus on Bemisia tabaci. M.Sc. Dissertation. Universidade Federal de Viçosa, Viçosa

  • Reuters (2017) Colheita de soja do Brasil começa com previsão de recorde de 103,5 mit. Available at: www.portaldoagronegocio.com.br. Accessed 10 Jan 2017

  • Rodríguez-Pardina PE, Arneodo JD, Truol GA, Herrera PS, Laguna IG (2004) First record of Cowpea mild mottle virus in bean crops in Argentina. Australas Plant Pathol 33:129–130

    Article  Google Scholar 

  • Rosario K, Capobianco H, Ng TFF, Breitbart M, Polston JE (2014) RNA viral metagenome of whiteflies leads to the discovery and characterization of a whitefly-transmitted carlavirus in North America. PLoS One 9:e86748

    Article  PubMed  PubMed Central  Google Scholar 

  • Rupasov VV, Morozov SY, Kanyuka KV, Zavriev SK (1989) Partial nucleotide sequence of Potato virus M RNA shows similarities to potexviruses in gene arrangement and the encoded amino-acid sequences. J Gen Virol 70:1861–1869

    Article  CAS  PubMed  Google Scholar 

  • Senshu H, Yamaji Y, Minato N, Shiraishi T, Maejima K, Hashimoto M, Miura C, Neriya Y, Namba S (2011) A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by Potato virus M. J Virol 85:10269–10278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Mahinghara B, Hallan V, Ram R, Zaidi A (2008) Recombination and phylogeographical analysis of Lily symptomless virus. Virus Genes 36:421–427

    Article  CAS  PubMed  Google Scholar 

  • Singh L, Hallan V, Martin D, Ram R, Zaidi A (2012) Genomic sequence analysis of four new Chrysanthemum virus B isolates: evidence of RNA recombination. Arch Virol 157:531–537

    Article  CAS  PubMed  Google Scholar 

  • Stukenbrock EH, Mcdonald BA (2008) The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100

    Article  CAS  PubMed  Google Scholar 

  • Suryanto A, Kuswant S, Kasno A (2014) Estimation of number and genes actions of CpMMV (Cowpea mild mottle virus) disease resistance genes on soybean crop. J Agric Vet Sci 7:51–56

    Google Scholar 

  • Tavantzis SM (1991) Coat protein and protease activity as in vitro translation products of Potato carlavirus M. Arch Virol 120:241–252

    Article  CAS  PubMed  Google Scholar 

  • Tavasoli M, Shahraeen N, Ghorbani S (2008) Detection and some properties of Cowpea mild mottle virus isolated from soybean in Iran. Pak J Biol Sci 11:2624–2628

    Article  Google Scholar 

  • Thouvenel JC, Monsarrat A, Fauquet C (1982) Isolation of Cowpea mild mottle virus from diseased soybeans in the Ivory Coast. Plant Dis 66:336–337

    Article  Google Scholar 

  • Turner R, Foster GD (1997) Deletion analysis of a translational enhancer upstream from the coat protein open reading frame of Potato virus S. Arch Virol 142:167–175

    Article  CAS  PubMed  Google Scholar 

  • Turner RL, Glynn M, Taylor SC, Cheung MK, Spurr C, Twell D, Foster GD (1999) Analysis of a translational enhancer present within the 5′-terminal sequence of the genomic RNA of Potato virus S. Arch Virol 144:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse MEJ (2002) Population biology of emerging and re-emerging pathogens. Trends Microbiol 10:S3–S7

    Article  CAS  PubMed  Google Scholar 

  • Yates A, Antia R, Regoes RR (2006) How do pathogen evolution and host heterogeneity interact in disease emergence? Proc R Soc Lond B 273:3075–3083

    Article  Google Scholar 

  • Zanardo LG, Silva FN, Bicalho AC, Urquiza GPC, Lima ATM, Almeida AMR, Zerbini FM, Carvalho CM (2014a) Molecular and biological characterization of Cowpea mild mottle virus isolates infecting soybean in Brazil and evidence of recombination. Plant Pathol 63:456–465

    Article  CAS  Google Scholar 

  • Zanardo LG, Silva FN, Lima ATM, Milanesi DF, Castilho-Urquiza GP, Almeida AMR, Zerbini FM, Carvalho CM (2014b) Molecular variability of Cowpea mild mottle virus infecting soybean in Brazil. Arch Virol 159:727–737

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y (2017) Advances and prospects in biogenic substances against plant virus: a review. Pestic Biochem Physiol 135:15–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Elliot W. Kitajima and to the Nucleus of Support for Research in Electron Microscopy (USP-Esalq) for assistance with transmission electron microscopy. We also thank Simon Elliot and two anonymous referees for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine M. Carvalho.

Additional information

Section Editor: F. Murilo Zerbini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanardo, L.G., Carvalho, C.M. Cowpea mild mottle virus (Carlavirus, Betaflexiviridae): a review. Trop. plant pathol. 42, 417–430 (2017). https://doi.org/10.1007/s40858-017-0168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-017-0168-y

Keywords

Navigation