Application of a Chebyshev Collocation Method to Solve a Parabolic Equation Model of Underwater Acoustic Propagation


The parabolic approximation has been used extensively for underwater acoustic propagation and is attractive because it is computationally efficient. Widely used parabolic equation (PE) model programs such as the range-dependent acoustic model (RAM) are discretized by the finite difference method. Based on the idea of the Pad\(\acute{\text {e}}\) series expansion of the depth operator, a new discrete PE model using the Chebyshev collocation method (CCM) is derived, and the code (CCMPE) is developed. Taking the problems of four ideal fluid waveguides as experiments, the correctness of the discrete PE model using the CCM to solve a simple underwater acoustic propagation problem is verified. The test results show that the CCMPE developed in this article achieves higher accuracy in the calculation of underwater acoustic propagation in a simple marine environment and requires fewer discrete grid points than the finite difference discrete PE model. Furthermore, although the running time of the proposed method is longer than that of the finite difference discrete PE program (RAM), it is shorter than that of the Chebyshev–Tau spectral method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: Computational Ocean Acoustics. Springer, New York (2011)

    Google Scholar 

  2. 2.

    Tappert, F.T.: The Parabolic Equation Approximation Method in Wave Propagation and Underwater Acoustics, vol. 70. Springer, New York (1977)

    Google Scholar 

  3. 3.

    Desanto, J.A.: Relation between the solutions of the helmholtz and parabolic equations for sound propagation. J. Acoust. Soc. Am. 62, 295–297 (1977)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Fain, G., Estes, L.E.: Numerical technique for computing the wide-angle acoustic field in an ocean with rang-dependent velocity profiles. J. Acoust. Soc. Am. 62, 38–43 (1977)

    Article  Google Scholar 

  5. 5.

    Lee, D., Mcdaniel, S.T.: A finite-difference treatment of interface conditions for the parabolic wave equation: the horizontal interface. J. Acoust. Soc. Am. 71, 855–858 (1982)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Jacobson, M.J., Robertson, J.S., Siegmann, W.L.: A treatment of three-dimensional underwater propagation through a steady shear flow. J. Acoust. Soc. Am. 86, 1484–1489 (1989)

    Article  Google Scholar 

  7. 7.

    Wang, D.P., Wang, C.W.: Application of parabolic equation model to shallow water acoustic propagation,in environmental acoustics. World Sci. pp 755–792 (1994)

  8. 8.

    Collins, M.D.: Higher-order pade approximations for accurate and stable elastic parabolic equations with applications to interface wave propagation. J. Acoust. Soc. Am. 89, 1050–1057 (1991)

    Article  Google Scholar 

  9. 9.

    Thomson, D.J.: Wide-angle parabolic equation solutions to range-dependent benchmark problems. J. Acoust. Soc. Am. 87, 1514–1520 (1990)

    Article  Google Scholar 

  10. 10.

    Collins, M.D.: A self-starter for the parabolic equation method. J. Acoust. Soc. Am. 92, 2069–2074 (1992)

    Article  Google Scholar 

  11. 11.

    Spiesberger, J.L., Boden, L., Bowlin, J.B.: Time domain analysis of normal mode, parabolic, and ray solutions of the wave equation. J. Acoust. Soc. Am. 90, 954–958 (1991)

    Article  Google Scholar 

  12. 12.

    Salomons, E.M.: Improved green’s function parabolic equation method for atmospheric sound propagation. J. Acoust. Soc. Am. 104, 100–111 (1998)

    Article  Google Scholar 

  13. 13.

    Collins, M.D., Siegmann, W.L.: A complete energy conserving correction for the elastic parabolic equation. J. Acoust. Soc. Am. 105, 687–692 (1999)

    Article  Google Scholar 

  14. 14.

    Collins, M.D.: User’s guide for RAM versions 1.0 and 1.0p (1999).

  15. 15.

    Henderson, L.: FOR3D (2015).

  16. 16.

    Shang, E.C., Lee, D., Pierce, A.D.: Parabolic equation development in the twentieth century. J. Comput. Acoust. 8, 4 (2000)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Zheng, Q.L.: Experiments on the 30-day long-range numerical weather prediction in a seven-level spectral model. J. Acad. Meteorol. Sci. 10, 234–246 (1989)

    Google Scholar 

  18. 18.

    Hu, Z.D., Ding, H.B., Cao, Y.: Application of pseudo-spectral method in rapid orbit optimization for SGKW. Aerospace Control (2009)

  19. 19.

    Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001)

    Google Scholar 

  20. 20.

    Nuttawit, W., Arisara, C., Sacharuck, P.: Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory. Acta Mech. Sin. 34(6), 1124–1135 (2018)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Sinan, D., Mehmet, S.: Rational chebyshev collocation method for solving nonlinear heat transfer equations. Int. Commun. Heat Mass Transf. 114, 104595 (2020)

    Article  Google Scholar 

  22. 22.

    Wang, Y.Q., Zhao, H.L.: Free vibration analysis of metal foam core sandwich beams on elastic foundation using chebyshev collocation method. Arch. Appl. Mech. (2019)

  23. 23.

    Khaneh, M.P., Ovesy, H.R.: Chebyshev collocation method for static intrinsic equations of geometrically exact beams. Int. J. Solids Struct. (2014)

  24. 24.

    Evans, R.B., Di X., Kenneth, E.G.: A Legendre–Galerkin technique for differential eigenvalue problems with complex and discontinuous coefficients, arising in underwater acoustics (2020)

  25. 25.

    Tu, H., Wang, Y., Liu, W., Ma, X., Xiao, W., Lan, Q.: A chebyshev spectral method for normal mode and parabolic equation models in underwater acoustics. Math. Prob. Eng. 2020, 1–12 (2020)

    MathSciNet  Google Scholar 

  26. 26.

    Tu, H., Wang, Y., Lan, Q., Liu, W., Xiao, W., Ma, S.: A chebyshev-tau spectral method for normal modes of underwater sound propagation with a layered marine environment. J. Sound Vib. 492, 1–16 (2021)

    Article  Google Scholar 

  27. 27.

    Tu, H.: A Chebyshev-Tau spectral method for normal modes of underwater sound propagation with a layered marine environment in matlab and fortran (2021).

  28. 28.

    Tu, H., Wang, Y., Ma, X., Zhu, X.: Applying chebyshev-tau spectral method to solve the parabolic equation model of wide-angle rational approximation in ocean acoustics. arXiv:2012.02405 (2020)

  29. 29.

    Colbrook, M.J., Ayton, L.J.: A spectral collocation method for acoustic scattering by multiple elastic plates. J. Sound Vib. 461, 114904 (2019)

    Article  Google Scholar 

  30. 30.

    Jie, S., Tao, T., Lilian, W.: Spectral Methods Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Google Scholar 

  31. 31.

    Gottlieb, David, Orszag, Steven A.: Numerical analysis of spectral methods, theory and applications. Society for Industrial and Applied Mathematics, Philadelphia (1977)

  32. 32.

    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Spring, Berlin (2006)

    Google Scholar 

  33. 33.

    Zhang, Z.: Super convergence of a chebyshev spectral collocation method. J. Sci. Comput. 34, 237–246 (2008)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Porter, M.B.: The Kraken Normal Mode Program. SACLANT Undersea Research Centre (2001).

  35. 35.

    Chowdhury, A.D., Vendhan, C.P., Bhattacharyya, S.K., Mudaliar, S.: A Rayleigh-Ritz model for the depth eigenproblem of heterogeneous pekeris waveguides. Acta Acust. United Acust. 104, 597–610 (2018)

    Article  Google Scholar 

  36. 36.

    Yang, K., Lei, B., Lu, Y.: Principle and Application of Typical Sound Field Model of Ocean Acoustics (in Chinese). Northwestern Polytechnical University Press, Xi’an (2018)

    Google Scholar 

Download references


This work was supported in part by the National Key Research and Development Program of China (2016YFC1401800), in part by the National Natural Science Foundation of China (61972406, 51709267) and in part by the Project of the National University of Defense Technology (4345161111L).

Author information



Corresponding author

Correspondence to Yongxian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tu, H., Liu, W. et al. Application of a Chebyshev Collocation Method to Solve a Parabolic Equation Model of Underwater Acoustic Propagation. Acoust Aust (2021).

Download citation


  • Chebyshev collocation method
  • Spectral method
  • Parabolic equation model
  • Underwater acoustics